SERIE II - TOMO XVIII

ANNO 1969

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

DIRETTORE: B. PETTINEO

TUDOR ZAMFIRESCO

Sur les points multiples d'une famille continue de courbes

Estratto

DIREZIONE E REDAZIONE:
VIA ARCHIRAFI, 34 - PALERMO (ITALIA)

SUR LES POINTS MULTIPLES D'UNE FAMILLE CONTINUE DE COURBES

par Tudor Zamfiresco (Bucarest, Romania)

1. Introduction

L'histoire des courbes dont nous allons parler commence certainement avec un article de Grünbaum de 1966 [4]. Mais leur préhistoire est sensiblement plus ancienne et se trouve constituée par des traveaux parmi lesquels ceux de Zindler [12], Hammer et Sobczyk [5], Zarankiewicz [11], Piegat [7], Goldberg [2], Grünbaum [3], Ceder [1], Smith [8], Menon [6]. Tous ces auteurs ont considéré et étudié des cas particuliers de ce que Grünbaum appelle famille continue de courbes, définie dans un cadre topologique, beaucoup plus large, dans [4]. En nous bornant d'ajouter seulement que presque tous les cas spéciaux de la préhistoire appartenaient à la géométrie des corps convexes plans, nous renvoyons pour une exposition plus complète à [4].

Soit C une courbe de Jordan fermée sur laquelle un certain sens est fixé, D la composante bornée de son complémentaire et $\mathcal L$ une famille d'arcs de Jordan ouverts satisfaisant aux conditions suivantes:

- 1^{0}) chaque élément de \mathcal{L} se trouve dans D, à l'exception de ses extrémités, qui, par conséquent, appartiennent à C;
 - 2°) chaque point $p \in C$ est l'extrémité de précisément un élément $L(p) \in \mathcal{L}$;
- 3^0) si p_1 , $p_2 \in C$ n'appartiennent pas à un même élément de \mathcal{L} , alors $L(p_1) \cap L(p_2)$ est formée d'un seul point;
- $E \in \mathcal{A}^0$ L(p) dépend continûment de $p \in C$.

Le est appelée famille continue de courbes et ses éléments courbes.

N signifiera l'ensemble des nombres naturels (\geqslant 1). $N_2=N-\{1\}$. Désignons par -p l'extrémité de L(p) différente de p.

Si l'intersection de trois courbes de $\mathcal L$ est vide, alors la composante bornée du complémentaire de leure réunion est appelée triangle. Soit T la réunion de tous les triangles.

Soit a un nombre cardinal. Définissons

$$M_{\alpha}(\mathcal{L}) = \bigcup_{\operatorname{card} A = \alpha} \bigcap_{p \in A} L(p)$$

et soit $M_f(\mathcal{L})$ l'ensemble des points $x \in D$ avec la propriété qu'il existe un arc non-dégénéré $\gamma_x \subset C$ tel que $x \in \bigcap_{p \in \gamma_x} L(p)$. Evidemment,

$$M_f(\mathcal{L}) \subset M_{\mathbf{C}}(\mathcal{L}) \subset M_{\mathbf{K}_0}(\mathcal{L}) \subset M_n(\mathcal{L}) \subset M_1(\mathcal{L}) = D$$
 $(n \in N_2).$

Soit maintenant $p \in C$. L(p) et l'arc des points rencontrés en parcourant C dans le sens fixé de p à -p forment une courbe de Jordan fermée, dont la composante bornée du complémentaire sera notée par $\Phi_d(p)$. Soit encore

$$\Phi_g(p) = D - \overline{\Phi_d(p)}$$
.

Nous allons continuer dans le travail présent la suite de certaines investigations de [4] et [10]. Notre attention sera principalement concentrée sur les relations entre les ensembles $M_n(\mathcal{L})$ et T. Un type intéressant d'alternative observé déjà par Grünbaum dans [4] sera également discuté et quelques résultats le mettant en évidence seront présentés.

2. UN TYPE D'ALTERNATIVE

Le type d'alternative présent chez Steinhaus [9] se retrouve dans le corollaire 3 de Grünbaum [4], d'après lequel $M_3(\mathcal{L})$ soit contient un point de $M_{\mathbb{C}}(\mathcal{L})$, soit contient c points différents. Puisque $M_2(\mathcal{L})$ est un " $L_2(\mathcal{L})$ -set", c.-à-d. que pour tout couple de points $x, y \in M_2(\mathcal{L})$ il y a deux points $a, b \in C$ et un arc γ joignant x avec y, tels que

$$\gamma \subset (L(a) \cup L(b)) \cap M_2(\mathcal{L})$$

(pour une démonstration voir le théorème 3 de Grünbaum [4]), si card $M_2(\mathcal{L}) \geqslant 2$, alors card $M_2(\mathcal{L}) = c$. D'autre part, si $M_2(\mathcal{L})$ contient un seul point p, alors évidemment $p \in M_c(\mathcal{L})$, ainsi que le même type d'alternative reste valable à l'égard de $M_2(\mathcal{L})$.

Plus significatif du point de vue topologique est pourtant le type suivant d'alternative (formulé ici pour $M_3(\mathcal{L})$ et démontré plus loin), qui en essence ne diffère pas de celui que nous venons de rappeler:

On a l'alternative: soit $M_f(\mathcal{L}) \neq \emptyset$, soit int $M_3(\mathcal{L}) \neq \emptyset$.

Qu'est ce qu'on peut dire en général, sur les $M_n(\mathcal{L})$? Une formulation tout à fait similaire de l'alternative serait évidemment incorrecte, parce que $M_n(\mathcal{L})$ peut être vide pour $n \geq 4$. Mais on a le

THÉORÈME 1. Soit $n \in N_2$. Si $M_n(\mathcal{L}) \neq \emptyset$ (condition automatiquement remplie si n = 2 ou 3), alors soit $M_f(\mathcal{L}) \neq \emptyset$, soit int $M_n(\mathcal{L}) \neq \emptyset$.

Démonstration. Nous nous baserons sur le théorème 2 de [10]. En supposant que $M_f(\mathcal{L}) = \emptyset$, nous allons prouver que int $M_n(\mathcal{L}) \neq \emptyset$. Si n est un nombre paire, alors $M_n(\mathcal{L}) - M_f(\mathcal{L}) \neq \emptyset$ et selon le théorème mentionné, int $M_{n+1}(\mathcal{L}) \neq \emptyset$, d'où int $M_n(\mathcal{L}) \neq \emptyset$. Si n est impaire, alors de l'inclusion $M_n(\mathcal{L}) \subset M_{n-1}(\mathcal{L})$ il résulte que $M_{n-1}(\mathcal{L}) - M_f(\mathcal{L}) \neq \emptyset$ et en appliquant de nouveau le même théorème, on retrouve que int $M_n(\mathcal{L}) \neq \emptyset$.

Nous reviendrons dans le dernier chapitre au sujet de ces alternatives.

3. RELATIONS ENTRE
$$M_2(\mathcal{L})$$
, $M_3(\mathcal{L})$ ET T

Du lemme 3 de Grünbaum [4], qui affirme que pour tout point $x \in M_2(\mathcal{L})$ il existe un triangle Δ tel que $x \in \overline{\Delta}$ (si $\cap \mathcal{L} = \emptyset$), il s'en suit que $M_2(\mathcal{L}) \subset \overline{T}$, d'où int $M_2(\mathcal{L}) \subset$ int \overline{T} . Le lemme 2 de Grünbaum [4] montre que $T \subset M_3(\mathcal{L})$, d'où $T \subset M_2(\mathcal{L})$. Il résulte de là que

$$T \subset \operatorname{int} M_2(\mathcal{L}) \subset \operatorname{int} \overline{T}$$
.

Nous allons préciser la situation en démontrant le

THÉORÈME 2. int $M_2(\mathcal{L}) = T$.

Démonstration. Il reste à prouver que int $M_2(\mathcal{L}) \subset T$.

Soit $a \in \text{int } M_2(\mathcal{L})$. Il y a alors deux points $x, y \in C$ tels que x, y, -x, -y soient rencontrés dans cet ordre lorsque C est parcouru dans le sens fixé et que

$$L(x) \cap L(y) = \{a\}.$$

Puisque

$$a \in \operatorname{int}(L(x) \cap M_2(\mathcal{L})),$$

il y a deux points (différents de a) up astrol so emérodat et lina este II

$$b, c \in L(x) \cap M_2(\mathcal{L})$$

tels que x, b, a, c, -x se trouvent dans cet ordre sur L(x). Soient u_1 , $u_2 \in C$ tels que

$$L(u_1) \cap L(x) = \{b\};$$
 $L(u_2) \cap L(x) = \{c\}.$

Si u_1 et u_2 and séparés par précisément une des quatre extrémités des courbes L(x) et L(y), alors on peut supposer sans altérer la généralité de la démonstration que $u_1 \in xy$ et $u_2 \in y(-x)$. Dans le cas contraire, il existe une autre courbe passant par a qui peut être prise comme L(y), de façon que l'on peut de nouveau supposer que u_1 et u_2 se trouvent respectivement sur xy et y(-x).

Soit $u_3 \in u_1 u_2$ le point le plus proche de u_2 tel que pour tout voisinage $U \subseteq C$ de u_3 , il existe un point $z \in U$ avec

$$L(z) \cap \operatorname{int} x a \neq \emptyset$$
.

Evidemment, $a \in L(u_3)$. Soit encore $u_4 \in u_3 u_2$ le point le plus proche de u_2 tel que $a \in L(u)$ pour tout $u \in u_3 u_4$ (l'arc $u_3 u_4$ n'est pas dégénéré seulement si $a \in M_f(\mathcal{L})$). Puisque

$$a \in \operatorname{int}(L(u_3) \cap M_2(\mathcal{L})),$$

il y a deux points (différents de a)

$$d, e \in L(u_3) \cap M_2(\mathcal{L})$$

tels que les points u_3 , d, a, e, $-u_3$ se trouvent dans cet ordre sur $L(u_3)$. Soient v_1 , v_2 deux points dans l'intérieur de l'arc $u_3(-u_3) \subset C$ (celui passant par u_2 et -x), tels que

$$L(v_1) \cap L(u_3) = \{d\}; \qquad L(v_2) \cap L(u_3) = \{e\}.$$

Ces points appartiennent à l'intérieur de l'arc $u_4(-u_3)$ car

$$L(v) \cap L(u_3) \not\subset \{d, e\}$$

pour tout point $v \in u_3 u_4$.

Choisissons les voisinages $V_i \subset C$ de u_i (i = 3, 4) tels qu'ils soient connexes et que

$$\{v_1, v_2, -v_1, -v_2\} \cap (V_3 \cup V_4) = \emptyset$$

et trouvons les points $w_3 \in V_3$ et $w_4 \in V_4$ tels que

$$a \in \Phi_d(w_3) \cap \Phi_g(w_4)$$
.

Il s'en suit du théorème de Jordan que

$$L(v_1) \cap L(v_2) \subset (\Phi_g(u_3) \cap \Phi_g(u_4)) \cup (\Phi_d(u_3) \cap \Phi_d(u_4)).$$

En effet, en supposant, par l'absurde, que l'inclusion précédente ne serait pas vraie, on aurait l'un des cas suivants:

a) $L(v_1) \cap L(v_2) \subset L(u_3)$, d'où

$$L(v_1) \cap L(u_3) = L(v_2) \cap L(u_3)$$

ce qui signifierait que d = e, absurde.

b) (*) $L(v_1) \cap L(v_2) \subset \operatorname{int} a u_4$, d'où $L(v_1)$ et $L(v_2)$ intersectent $\Phi_d(u_3) \cap \Phi_g(u_4)$ (autrement, selon le théorème de Jordan, $L(v_1)$ ou $L(v_2)$ rencontrerait une deuxième fois $L(u_4)$ dans un point du sous-arc $a(-u_4)$). En appliquant de nouveau le théorème de Jordan et en tenant compte que chacune des courbes $L(v_1)$ et $L(v_2)$ ne peut couper $L(u_4)$ que dans un seul point, on a

$$L(v_i) \cap a u_3 \neq \emptyset \qquad (i = 1, 2).$$

Mais d'ici il résulterait que e n'appartient ni à $L(v_1)$, ni à $L(v_2)$, ce qui est absurde.

- c) $L(v_1) \cap L(v_2) \subset \operatorname{int} a(-u_4)$ (voir b)).
- d) $L(v_1) \cap L(v_2) \subset \Phi_d(u_3) \cap \Phi_g(u_4)$ (si le membre droit n'est pas vide). La démonstration découle comme au point b).
- e) $L(v_1) \cap L(v_2) \subset \Phi_d(u_4) \cap \Phi_g(u_3)$ (si le membre droit n'est pas vide). Pour une démonstration de l'absurdité, voir d).

Si

$$L(v_1) \cap L(v_2) \subset \Phi_{\sigma}(u_3) \cap \Phi_{\sigma}(u_4),$$

alors a se trouve dans le triangle déterminé par $L(v_1)$, $L(v_2)$ et $L(w_4)$. Si

$$L(v_1) \cap L(v_2) \subset \Phi_d(u_2) \cap \Phi_d(u_4)$$

alors a se trouve dans le triangle déterminé par $L(v_1)$, $L(v_2)$ et $L(w_3)$. Donc, de toute façon, $a \in T$.

COROLLAIRE. Pour tout $n \in N_2$, on a int $M_n(\mathcal{L}) \subset T$.

THÉORÈME 3. On a les égalités:

$$\operatorname{int} M_2(\mathcal{L}) = \operatorname{int} M_3(\mathcal{L}) = T;$$
 $\operatorname{bd} M_2(\mathcal{L}) = \operatorname{bd} M_3(\mathcal{L}).$

Si, en outre, $\cap \mathcal{L} = \emptyset$, alors

$$\operatorname{bd} M_2(\mathcal{L}) = \operatorname{bd} M_3(\mathcal{L}) = \operatorname{bd} T.$$

^(*) Les cas b)-e) sont à considérer seulement si $u_3 \neq u_4$.

Démonstration. Si $\cap \mathcal{L} \neq \emptyset$, alors

$$\operatorname{int} M_2(\mathcal{L}) = \operatorname{int} M_3(\mathcal{L}) = T = \emptyset$$

et

$$\operatorname{bd} M_2(\mathcal{L}) = \operatorname{bd} M_3(\mathcal{L}) = \cap \mathcal{L}.$$

Supposons maintenant que $\cap \mathcal{L} = \emptyset$. Selon les résultats de Grünbaum mentionnés avant le théorème 2, on a d'un côté $M_3(\mathcal{L}) \subset M_2(\mathcal{L}) \subset \overline{T}$, d'où

$$\overline{M_3(\mathcal{L})} \subset \overline{M_2(\mathcal{L})} \subset \overline{T}$$

et de l'autre côté $T \subseteq M_3(\mathcal{L})$, d'où

$$\overline{T} \subset \overline{M_3(\mathcal{Q})};$$

par conséquent

$$\overline{M_2(\mathcal{L})} = \overline{M_3(\mathcal{L})} = \overline{T}.$$

De $T \subseteq M_3(\mathcal{L})$ il s'en suit aussi que

$$T \subset \operatorname{int} M_3(\mathcal{L})$$
.

De l'inclusion évidente $M_3(\mathcal{L}) \subset M_2(\mathcal{L})$, on a

$$\operatorname{int} M_3(\mathcal{L}) \subset \operatorname{int} M_2(\mathcal{L}),$$

et selon le théorème 2

int
$$M_2(\mathcal{L}) = T$$
;

par conséquent

int
$$M_2(\mathcal{L}) = \operatorname{int} M_3(\mathcal{L}) = T$$
.

Il résulte aussi que les frontières de $M_2(\mathcal{L})$, $M_3(\mathcal{L})$ et T coı̈ncident et le théorème 3 est prouvé.

4. RELATIONS ENTRE $M_n(\mathcal{L})$ ET T

Selon le théorème 3, l'inclusion $M_2(\mathcal{L}) \subset \overline{T}$ s'écrit aussi

$$M_2(\mathcal{L}) \subset T \cup \mathrm{bd} M_3(\mathcal{L})$$

(si
$$\cap \mathcal{L} \neq \emptyset$$
, alors $M_2(\mathcal{L}) = \operatorname{bd} M_3(\mathcal{L}) = \cap \mathcal{L}$).

Nous allons généraliser cette inclusion, en prouvant le théorème suivant (voir son corollaire 1):

THÉORÈME 4. Pour tout $n \in N_2$, on a

$$M_n(\mathcal{L}) \subset T \cup M_f(\mathcal{L}) \cup \text{ bd int } M_{2n-1}(\mathcal{L}).$$

Démonstration. Soit $a \in M_n(\mathcal{L})$ et supposons que $a \notin M_f(\mathcal{L})$. Alors il y a 2n+1 points

$$x_1, y_1, \ldots, x_n, y_n, x_{n+1} \in C,$$

tels que

$$\bigcap_{i=1}^{n} L(x_i) = \{a\}; x_{n+1} = -x_1;$$

$$y_i \in x_i x_{i+1}; a \notin L(y_i) (i = 1, ..., n).$$

Définissons la fonction $h: \{1, \ldots, n\} \rightarrow \{-1, 1\}$ par

$$h(i) = \begin{cases} 1 & \text{si} \quad a \in \Phi_g(y_i) \\ -1 & \text{si} \quad a \in \Phi_d(y_i) \end{cases}$$

et convenons de dire qu'on a la situation $(h(1), \ldots, h(n))$.

LEMME 1. La situation $(-h(n), h(1), \ldots, h(n-1))$ se réduit à la situation $(h(1), \ldots, h(n))$.

En effet, si l'on renote (note) les points x_i avec x_{i-1} $(i=2,\ldots,n+1)$, $-x_2$ avec x_{n+1} , y_j avec y_{j-1} $(j=2,\ldots,n)$ et $-y_1$ avec y_n , alors la situation $(-h(n), h(1), \ldots, h(n-1))$ se transforme en $(h(1), \ldots, h(n))$.

LEMME 2. Si la variation totale de h est supérieure à 2, alors $a \in T$.

Si la variation totale de h est supérieure à 2, alors il y a trois nombres $p_1,\ p_2,\ p_3\in N$ tels que $p_1< p_2< p_3\leqslant n$ et

$$h(p_1) = h(p_3) \neq h(p_2),$$

c.-à-d. que soit

$$a \in \Phi_{g}(y_{p_{1}}) \cap \Phi_{d}(y_{p_{2}}) \cap \Phi_{g}(y_{p_{3}}),$$

soit

$$a \in \Phi_d(y_{p_1}) \cap \Phi_g(y_{p_2}) \cap \Phi_d(y_{p_3}).$$

En tout cas, a appartient à l'intérieur du triangle déterminé par $L(y_{p_1})$, $L(y_{p_2})$ et $L(y_{p_3})$, d'où $a \in T$.

LEMME 3. Si la variation totale de h est 0 ou 2, alors la situation se réduit à $(1, 1, \ldots, 1)$.

Si la variation totale de h ne dépasse pas 2, alors la situation est

$$(\underbrace{1, \ldots, 1}_{k}, -1, \ldots, -1) \qquad (0 \leq k < n)$$

ou

$$(\underbrace{-1,\ldots,-1}_{l},\ 1,\ldots,\ 1) \qquad (0 \leqslant l < n).$$

On obtient la situation désirée en appliquant m fois le lemme 1, où m=k+n dans le premier cas, ou m=l dans le second.

Selon les lemmes 2 et 3 il nous reste pour accomplir la démonstration du théorème, de prouver que dans la situation (1, 1, ..., 1),

$$a \in T \cup \text{bd int } M_{2n-1}(\mathcal{L}).$$

Soit V un voisinage ouvert et connexe de a disjoint de chaque courbe $L(y_i)$ $(i=1,\ldots,n)$. Alors, selon le lemme 1 de Grünbaum [4], pour tout point $b \in W$, où

$$W = V \cap \Phi_g(x_1) \cap \Phi_d(x_2),$$

on peut trouver $z_i \in y_i x_{i+1}$ (i = 1, ..., n) et $z_{n+j-1} \in x_j y_j$ (j = 2, ..., n) tels que

$$\bigcap_{i=1}^{2n-1} L(z_i) = \{b\}.$$

Puisque $a \in \text{bd } W$ et $W \subseteq M_{2n-1}(\mathcal{L})$, il s'en suit que

$$a \in \overline{\operatorname{int} M_{2n-1}(\mathcal{L})}$$
.

En vertu du corollaire du théorème 2, int $M_{2n-1}(\mathcal{L})\subset T$, d'où

$$a \in T \cup \text{bd int } M_{2n-1}(\mathcal{L})$$

et le théorème 4 est complètement prouvé.

Puisque

$$M_f(\mathcal{L}) \subset M_{2n-1}(\mathcal{L}) \subset \operatorname{int} M_{2n-1}(\mathcal{L}) \cup \operatorname{bd} M_{2n-1}(\mathcal{L}) \subset T \cup \operatorname{bd} M_{2n-1}(\mathcal{L})$$

(selon le corollaire du théorème 2) et

$$\mathrm{bd}\;\mathrm{int}\;M_{2n-1}(\mathcal{L})\subset\mathrm{bd}\;M_{2n-1}(\mathcal{L}),$$

on a le

COROLLAIRE 1. Pour tout $n \in N_2$,

$$M_n(\mathcal{L}) \subset T \cup \operatorname{bd} M_{2n-1}(\mathcal{L}).$$

Du théorème 4 il s'en suit qu'on peut également formuler l'alternative suivante:

COROLLAIRE 2. Si $n \in N_2$ et $M_n(\mathcal{L}) - T \neq \emptyset$, alors soit $M_f(\mathcal{L}) \neq \emptyset$, soit int $M_{2n-1}(\mathcal{L}) \neq \emptyset$.

Une alternative plus similaire à celle établie par Steinhaus et par Grünbaum dans certaines circonstances et évoquée par nous avant le théorème 1 constituera un troisième corollaire du théorème 4.

Notons

$$M_{\alpha}^{*}(\mathcal{L}) = M_{\alpha}(\mathcal{L}) - T,$$

où a est un nombre cardinal.

COROLLAIRE 3. Si $\log_2(m-1) \in N$ et $M_m^*(\mathcal{L}) = \emptyset$ impliquent $M_m(\mathcal{L}) = \emptyset$, alors soit $M_{\aleph_n}^*(\mathcal{L}) \neq \emptyset$, soit card $M_n^*(\mathcal{L}) \geqslant \aleph_0$ pour tout $n \in N$.

Donnons une démonstration au corollaire 3. Supposons à cet effet que $M^*_{\aleph_0}(\mathcal{L})=\emptyset$ et prouvons que, dans les conditions du corollaire, $M^*_n(\mathcal{L})$ contient une suite infinie de points, quel que soit n. Définissons la suite de points $\{a_i\}_{i=1}^{\infty}$ de la manière suivante: Puisque $M^*_{\aleph_0}(\mathcal{L})=\emptyset$, on a $\cap \mathcal{L}=\emptyset$, d'où $T\neq\emptyset$ donc on a aussi $M_3(\mathcal{L})\neq\emptyset$, d'où $M^*_3(\mathcal{L})\neq\emptyset$ et choisissons $a_1\in M^*_3(\mathcal{L})$. Si (en procédant par induction) le point a_i a déjà été choisi dans $M^*_{2^i+1}(\mathcal{L})$, alors selon le théorème 4,

$$a_i \in (M_f(\mathcal{L}) - T) \cup \text{bd int } M_{2^{i+1}+1};$$

mais $M^*_{\mathbf{X}_0}(\mathcal{L}) = \emptyset$ implique $M_f(\mathcal{L}) - T = \emptyset$, donc int $M_{2^{i+1}+1}(\mathcal{L}) \neq \emptyset$, d'où, en fin, $M^*_{2^{i+1}+1}(\mathcal{L}) \neq \emptyset$ et l'on choisit $a_{i+1} \in M^*_{2^{i+1}+1}(\mathcal{L})$.

S'il existe une suite partielle $\{a_{q_i}\}_{i=1}^{\infty}$ de la suite définie auparavant, dont tous les termes coïncident, alors $a_{q_1} \in M^*_{2^i+1}(\mathcal{L})$ pour tout $i \in N$, c.-à-d. que $a_{q_1} \in M^*_{\mathbf{X}_0}(\mathcal{L})$, ce qui est absurde. Donc $\{a_i\}_{i=1}^{\infty}$ a une infinité de points distincts. Il s'en suit que pour tout $n \in N$, la suite partielle $\{a_{n+i}\}_{i=1}^{\infty}$ a une infinité de points distincts. D'autre part,

$$a_{n+i} \in M_{2^{n+i}+1}^*(\mathcal{L}); \qquad M_{2^{n+i}+1}^*(\mathcal{L}) \subset M_n^*(\mathcal{L}).$$

Donc card $M_n^*(\mathcal{L}) \geqslant \aleph_0$.

Bochum (Germania), Avril 1969.

BIBLIOGRAPHIE

- [1] J. Ceder, On outwardly simple line families, Can. J. Math. 16 (1964), 1-11.
- [2] M. Goldberg, On area-bisectors of plane convex sets, Amer. Math. Monthly 70 (1963), 529-531.
- [3] B. Grünbaum, Measures of symmetry for convex sets, Proc. Symp. Pure Math. 7 (Convexity) (1963), 233-270.
- [4] B. Grünbaum, Continuous families of curves, Can. J. Math. 18 (1966), 529-537.
- [5] P. C. Hammer and A. Sobczyk, *Planar line families I, II*, Proc. Amer. Math. Soc. 4 (1953), 226-233, 341-349.
- [6] V. V. Menon, A theorem on partitions of mass-distributions, Pacific J. Math. 16 (1966), 133-137.
- [7] E. Piegat, O srednicach figur wypuklych plaskich, Roczn. Polsk. Towarz. Mat., Ser. 2 7 (1963), 51-56.
- [8] T. J. Smith, Planar line families, Ph. D. Thesis, University of Wisconsin, 1961.
- [9] H. Steinhaus, Quelques applications des principes topologiques à la géométrie des corps convexes, Fund. Math. 41 (1955), 284-290.
- [10] T. Zamfiresco, On planar continuous families of curves, Can. J. Math. 21 (1969), 513-530.
- [11] K. Zarankiewicz, Bisection d'ensembles convexes plans par des droites, Wiadom. Mat., Ser. 2, 2 (1959), 228-234 (en polonais).
- [12] K. Zindler, Über konvexe Gebilde I, II, III, Monatsh. Math. 30 (1920), 87-102; 31 (1921), 25-56; 32 (1922), 107-138.