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An example of a two-connected planar graph without concurrent longest 
paths is provided. 

INTRODUCTION 

Does there exist any connected graph without concurrent longest paths? 

This non-trivial question was raised by T. Gallai at the Colloquim on 
Graph Theory held at Tihany, Hungary, in 1966. The answer is already 
known, H. Walther producing an example in 1969. Now, in connection 
with this problem a number of related questions may be put, and some of 
them seem to be at least as non-trivial as the original question of T. Gallai. 

Let Pi = co (pi = co) if there is no i-connected graph (planar graph) 
such that each set of j points is disjoint from some longest path. 
If Pi3 # co (FJ # co), let Pt (Fgg denote the minimum number of points 
of an i-connected graph (planar graph), such that each set of j points is 
disjoint from some longest path. Analogously are defined Ct and ZiC, for 
longest circuits instead of longest paths. 

The collection of questions we mentioned above may be concisely 
formulated as follows: Determine all Pij, Pj, Cl, and Ciif ! Until now we 
know 

1. PI1 < 25 (Walther [3]), 
2. C,l < 10 (Petersen’s graph), 
3. C,l < 105 (Walther [3]), 
4. Ca2 < 220 (Walther [4]). 

(Besides the (answered) question “Is PI1 = 03 ?” of Gallai [l, p. 3621, the 
questions “Is Cs2 = co?” (H. Sachs [l, p. 368]), “PI1 = ?’ (Walther 
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[3, p. 6]), and “Is PI* = co for some n?” (Walther [3, p. 61) have also 
been explicitly raised.) 

The purpose of this note is to show that 

LEMMAS 

We use some notations from [3]: Let the part S of a graph G be defined 
by Fig. 1, where its twenty points and the lines joining points in S with 

FIGURE 1 

points in G - S are denoted. (Figure 1 is derived from part of Fig. 2 of 
W. T. Tutte [2].) Let W be a longest path in G. 

LEMMA 1 (Walther [3]). Zf W has no end-point in S and contains the 
lines A and B (B and C, C and A), then W n S has 17 (18, 18)points. 

LEMMA 2 (Walther [3]). For each point u in S, there exists a path 
joining A with B (or B with C, or C with A), containing 17 (18, 18) points, 
and not passing through u. 

LEMMA 3. Zf W bus exactly one end-point in S, and contains exactly one 
of the lines A, B, C, then WIT S has less than 20points. 

Proof. In case A or B lies in W the proof is provided by a Hilfssatz in [3]. 
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Consider now the case in which C lies in W. Suppose W n S has 20 points. 
Then the end-point (considered the first point) of Win S must be one of 
the points p, r, I, n; otherwise at least one of these points will never be met 
by W. For the same reason the first 8 points in W must be p, q, r, k, I, m, n, 

. . 
o (possibly m some other order). Then must come a and t; but, after 1, at 
least one of the points b and s will irremediably be lost, which provides a 
contradiction. 

LEMMA 4. If W has exactly one end-point in S, and contains all lines A, 
B, and C, then W n S has exactly 19 points. 

ProojI Suppose W n S has 20 points. Obviously W n S has two 
connected components 01, p. Let 01 be the component containing the end- 
point w  of Win S (first point of W). Then w  is one of the points k, I, m, n, 
o, p, q, r, which are the first 8 points in IX. 

1. Suppose A is in 01. If mf or kg is in 01, then fegjs or gjs continues the 
path, and i will not be reached by /3. If qs is in CX, then bhijge lies on /3, but 
then one of the points d and f  will not be contained by B. If oa is in 01, then 
btsjihde is in /3, but then either g is forgotten or C will not be reached. 

2. Suppose now B is in (Y. Then S - (Y is disconnected, which contra- 
dicts the existence of the path /I joining C with A. 

3. Suppose C is in CL If mfc or mfedc is in 01, then atsj lies on /3, but then 
either fl continues through ihb and does not meet g, or meets g and never 
reaches i. If mfegjih or kgjih is in 01, then g loses either s or b. 

Hence W n S has at most 19 points. The proof will be completed by 
giving for every case an example of possible shape for W n S, such that W 
always omits from S exactly one point: 

1. A is in a : 
2. B is in 01 : 
3. C is in 01 : 

~11 = pqrklmnoad, /3 = BbtsjihdefcC. 
LX = pqrkgedhijstbB, p = CcfmnoaA. 
01 = IkrqponmfcC, p = AatsjgedhbB. 

THE EXAMPLE 

Consider the part F of a graph, shown in Fig. 2, the graph G’ of Fig. 3, 
where each of its parts H, 1, J, K (called F-parts) is isomorphic to F1, 
and the graph G obtained from G’ by contracting the lines appearing in 
Fig. 3. 

1 Since F is not symmetric, more than one graph may be imagined for Fig. 3. 
Take G’ to be one of them. 
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FIGURE 2 

FIGURE 3 

We construct a path W, originating in H, passing successively through 
H, Z, J, H, K, J, and having 21 points in H, 19 points in Z, 21 points in J, and 
19 points in K. For the construction (which obviously does not lead to 
a unique path), we use Lemmas 2 and 4. Because some points from different 
F-parts are identified when forming G, this path W,, has 75 points. 

Now let W be an arbitrary longest path in G. 

LEMMA 5. Zf there is no F-part of G containing both end-points of W, 
then W has at most 75 points. 
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Proof. Let us say the end-points of W lie in H and I. If W lies in the 
union of only three F-parts, then it has at most 63 points. Suppose in the 
sequel that there do not exist three F-parts of G such that W lies in their 
union. 

Let v be the number of contracted lines of G’, whose identified end- 
points are now on W. 

If W passes successively only four times through consecutively different 
F-parts, then v = 3; since all these F-parts are different, W n Hand W n I 
are connected, and Lemma 3 asserts that they have at most 20 points each 
(pay attention, now and in the following, to the difference between Figs. 1 
and 2). Furthermore, the rest of W has, by Lemma 1, exactly 19 points in 
each of the F-parts J and K. Hence W has at most 75 points. 

If W passes successively five times through consecutively different 
F-parts, then v = 4, and one of the parts W n Hand W n I, say W n H, 
is connected and the other, W n 1, disconnected. Following Lemma 3, 
W n H has at most 20 points; following Lemma 4, W n I has 21 points. 
Hence, analogously, W has at most 75 points. 

If W passes successively six times through consecutively different 
F-parts, then v = 5; W n H and W n I are disconnected and have, by 
Lemma 4, 21 points each. Hence, again, W has at most 75 points. 

Supposing W passes successively more than six times through conse- 
cutively different F-parts, W would have disconnected intersection with 
more than two F-parts. Thus W would include 4 of the lines entering some 
F-part. Since each F-part has only 3 entry lines, this is absurd. 

LEMMA 6. If both end-points of Ware in some F-part of G, then W has 
at most 75 points. 

Proof. Let us say the end-points of W lie in H. If W lies in the union 
of only three F-parts, then the statement is known to be verified. If not, 
then the number v introduced in the proof of Lemma 5, clearly equals 4, 
since W passes successively five times through consecutively different 
F-parts. Thus, W has at most 22 points in H, and the rest of W has, by 
Lemma 1, exactly 19 points in each of the other F-parts. Hence W has at 
most 75 points. 

THEOREM. The graph G has 82pknts and is a two-connectedp!anar graph 
without concurrent longest paths. 

Proof. One has only to prove that, for each point u in G, there exists 
a longest path avoiding u. The existence of the path W, and Lemmas 5 
and 6 show every longest path has 75 points. Suppose, for instance, 
u is in 1, but not in H, J, or K. Return to the construction of the path W, . 



A GRAPH WITHOUT CONCURRENT LONGEST PATHS 121 

Lemma 2 enables us to reconstruct W, in such a way that W, n I avoids U. 
To complete the proof, consider now the case in which u is precisely one 
of the points resulting from the contraction of lines in G’. Then we may 
say without loss of generality that ZJ lies simultaneously in I and K; by 
applying again Lemma 2, we can reconstruct W, so that both W,, n I and 
W, n K avoid u. 
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