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Spreads

By TuDOR ZAMFIRESCU

The investigation of spreads is mainly motivated by their applications
in the theory of convex sets (see GRUNBAUM [22]). They may be considered
as a continuous pendant to the discrete arrangements of pseudolines
(GRUNBATM [23]).

Many authors have investigated special families of chords of planar
convex bodies. ZINDLER studied several of them systematically in [44],
[45]. HAMMER—S0BCZYK [24], SMrTH [32], CEDER [11] considered diameters.
Spreads of midcurves have been discussed by Bruxw [7], Emon [18],
STEINHAUS [33]; see also VIET [35], CHARERIAN-STEIN [14], CEDER [13],
EnmrpART [17]. GRUNBAUM [23] points out that, using another special
type of spread, one can establish the existence of an inscribed affinely
regular hexagon (see Brsicovircm [3], FAry [19], Frses TétH [20]).
That each planar convex body with straight-line midcurves is an ellipse
was under various additional conditions proved by BERTRAND [2],
BrascEKE [4], [5], Nakasmva [30], Bercer [1], KuBoTa [28], KNESER
[27], BusEMANN-KELLY [10], BusEMANN [9], DaNzER-LAUGWITZ-LENZ
[15], Stss-VIET-BERGER [34]. BRENNAN [6], ZITRONENBAUM [46] consi-
dered bisectors of area or perimeter. However, this list is far from com-
plete.

The concept of a spread can be generalized further (see ZAMFIRESCU
[36]). But the object of the present paper does not involve this generaliza-
tion; on the contrary, here we shall be mainly interested in particular types
of spreads. These are spreads under additional continuity conditions. Their
treatment is mainly motivated by the theory of smooth convex bodies in
the plane: each one of the above examples of spreads becomes of one of
these particular types if the convex body is smooth enough.

Introduction

Let C be a Jordan closed curve in the Euclidean plane and D be the
bounded domain with boundary C. A family £ of simple arcs in D, further
called curves, is a spread provided [22]:

(i) each curve L e £ (except its endpoints) lies in D and its endpoints
belong to C,

(ii) each point p € C is the endpoint of exactly one curve L(p) € £,
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(iii) if L, L, are two different curves in &, then L; N L, contains a
single point,
(iv) the curve L(p) depends continuously on p € C.

We notice that the topology of € is that induced by Hausdorff’s metric.
A spread, the curves of which are line-segments, is said to be straight.
Following [37], a maximal connected subset of £, the elements of which
are concurrent curves, is called a pencil. By taking B < g instead of £,
we get the notion of a B-pencil. Let a € D, B = {L € 8: a € L}, A, be the
family of all B-pencils, and x a cardinal number not greater than c¢. We
denote:

P,(L) ={aeD:card A, >

Vi) ={aeD:card U, =
We also recall [37], [39]:

M(2) ={acD:card{Lef:a€c L} > z},
T(2) ={aecD:card{Lef:a€c L} = .

x},
x}.

Points in 7,(L) are said to have multiplicity x. Obviously,

T(8) = V«(8) (x < Ry),
Vi(8) = Ty(8) v T(8),
P,(8) © M(8).

If card M = 1, then (M) denotes the single point of M.
The first result established on spreads in their general form was the
following:

Theorem A (Griinbaum [22]). For all L € & with at most one exception,
LN My # 2.

This theorem admits as a corollary the assertion that £ itself must be a
pencil if card M4(2) = 1. This implies further the symmetry of a planar
convex body in which £ is the spread of area-bisectors, perimeter-bisectors,
or mideurves, and card M4(8) = 1 (ZARANKIEWICZ [43], VIET [35]; see
also PIEGAT [31], MENON [29], CHARERIAN-STEIN [14]). Theorem A also
holds for the mentioned generalized spreads (ZamrIrESCU [36]). In the
case of usual spreads, Theorem A has been completed by:

Theorem A’ (Zamfirescu [37]). If 8 is not a pencil, then for all Le
with at most three exceptions

relint (L N M4(R)) # &.

We notice that relint 7 means the interior of I in the topology of L € &,
where L o 1.
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Corollary 1 will show that in our more particular spreads such excep-
tions cannot occur. Further results on relint (L N M,(2)) can be found in
ZAMFIRESCU [38] and Ivan [26].

We also recall:

Theorem B (Zamfirescu [36]). Let n be finite and even. Then
(2) of M,(R) # My (2), then int M, (8) # >.

CHARERIAN-STEIN [14], HaMMER-S0oBOZYR [25], CEDER [12] (see also
[11]) obtained stronger variants of Theorem B in the case of spreads of
mideurves and of diameters, A strengthening of Theorem B and a related
result in the general case are Theorems 2 and 3, respectively.

Before we state Theorems C and D, let us recall two definitions [22]: A
set £ < D is said to be

L-convex if, for each Le 8, L N £ is either empty or connected,
an Ly(8)-set if every pair of points in £ may be joined within B by a
simple arc composed by two subares of curves in L.

Theorem C (Griinbaum [22]) M,(R) is L-conver.

Theorem D (Griinbaum [22], Zamfirescu [36]). M,(R) and M4(8) are
Ly(8)-sets.

Related to Theorems C and D is a conjecture of Griinbaum [23] which
says that, for each j > 1, & #(8) is an L-convex L,(8)-set. Theorem 6 will
disprove this conjecture. The L-convexity is also studied in [41], [42].

Theorem E (Zamfirescu [36]). If f, and f, are continuous maps of L into
wself, then there exists I e such that

LNOfi(L)nfyL) # 2.

This theorem and corollaries of it can be used to derive the existence of
six-partite points for each planar convex body (Buck—Buck [8]) and other
more general results (EcgLEsTON [16], GrRUNBAUM [2 1], Ceper [12]).
Applied to midcurves Theorem E implies a result of StTEINHAUS [33]
concerning bisecting chords.

Let T' be the union of all triangles (a triangle is the bounded component
of the complement of the union of three non-concurrent curves in ¢ [40]).
It is easy to verify that

T < int My(2) < int 7.
More precisely, the mutual position of 7' and M,(Q) is given by
Theorem F (Zamfirescu [40]). T = int M,(g).

Theorem 8 will strengthen Theorem F in the case of a spread of curves
of one of our particularized forms.
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Special Spreads and Relationships Between Them

For p € U, denote by — p the other endpoint of L(p). Let w be a certain
orientation on €. We write p < ¢ if by walking on C in the orientation w
one meets the distinct points p, ¢, —p in this order. A sequence {p,}>_, of
points on C is monotone if p, < p, ., for all » in the set N of the natural
numbers or p,,; < p, for all n € N. We consider the following properties
that a spread & may possess at some point p € C:

Ci:p,€C — {p}ne N) A {p,}7-; is monotone Ap,—p = {{L(p,) N
L(p)y}e. 1 converges.

Oy preC — {p)ne N) A p,—p = {(L(p,) O L(p)Y}e-, converges.

Cs: Py 4w € 0, L(p,) # L(g,) (m € N) A Dy, ¢ — p = {{L(p,) N
L(g,)>}r-, converges.

Figure 1
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A usual spread of curves as defined in the Introduction will also be
called a Cy-spread. A C,-spread with property C; at every point of C will
be called a O;-spread (i = 1, 2, 3). Of course, each Ci-spread is also a C; _,-
spread.

To see that not all C;_,-spreads are C-spreads is easy, with perhaps the
exception ¢ = 3. Here is an example of a straight C,-spread which is not a
Cg-spread:

On Figure 1 {a,}*_, is a horizontal sequence of points converging to
a € L(p) and {b,}>_; a sequence of points on L(p) converging to b. Joining
by straight lines @, with b; and b,, a, with b and b, and so on, we get
intersection points p, and p,, p, and P4, - - - wWith C. The intersections of
these lines with D will be curves L(p,) and L(ps), L(ps) and L(p,), ... of a
spread. Clearly, {{L(p,) N L(p)>}Z_, converges to b and {L(p,): n € N} U
{L(p)} can easily be extended to a Cy-spread £ in D. Now put ¢, = Do,
92 =P 93 = Pss 94 = P>-- -39k -1 = Pog> Yo = P,.... Then Drteai
and {g,}>°_; converge to p, but {{L(p,) N L(g,)>}>- ; has both @ and b as
limit points. Thus £ is not a Cy-spread.

Let ® = {(L,L): Le 8} and g: £2 — D —> D be defined by g(L, L) =
(LN L). This function is continuous for each spread of curves £. The
obvious proposition which follows characterizes the C;-spreads in terms of
the function g¢.

Pl;oposition. L is a Cg-spread if and only if g can be continuously extended
to 2.
General Results
Theorem 1. If the spread L has property C in p €C, then
relint (L(p) N T4, (R)) = @
for every n € N.
Proof. Let us consider two homeomorphisms
¢:la, 0] —> 4,
$:[e, d] — L(p),

providing parametric representations of the arc 4 = {pu{-pu
{x eC:z < p} and of the curve L(p). Then the application

fi(a, ) — (c, d)
defined by
f(@) = ¢~ ((L(p(x)) N L(p)y)
is continuous. Also,
f((@, 8)) = =1 (L(p) N My(Q)).
Suppose, for some n we have
relint (L(p) N T,,(R)) # o.
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Then there exists an open interval J < f((a, b)), such that, for each
Aed, card f~(2) = 2n — 1. It follows that for such a A, each point
z € f~(A) is a local extremum of f|, ,; and of f|, ;,. This kind of argument
was already used in [38] and [39]. Like there, we fix a point A, € J and say
x € f~*(A) is of type (+, +) if z is a local maximum for both f|, ., and
fliz,5» of type (+, —) if z is a local maximum [for f|, .; and a local
minimum for f|, ,,, ete. Let [+, +1,[+, —1,[—, +1,[—, — ] be the set of
points in f~%(},) of type (+, +), (+, —), (—, +), (—, —) respectively.
Since
card f~1()) = 2n — 1
not only for A = A, but for every A €J, we can show that
card [+, +] = card [—, —].

By Darboux’s property of f, for A’ < A sufficiently close to A, we find
indeed in f~1(X’) at least 2 card [+, + ] points close to points in [+, +],
at least card [+, —] points close to those in [+, —], and at least card
[—, +] points close to those in [—, +]. It follows that card [—, —] >
card [+, +]. Similarly we get the inverse inequality too, whence equality
holds.

We further deduce that card [+, +]U[—, —]) is even and conse-
quently card ([+, —]U[—, +]1is odd.

Since for two consecutive points in f~1(A,) the second type-sign of the
first point equals the first type-sign of the second point, it follows that the
first type-sign of the first point in f~1(},) is different from the second
type-sign of the last point in f~1(A,).

Therefore either

lim f(x) < A, and lim f(z) > A,
x=b

x—=a

or
lim f(z) > A, and lim f(z) > A,.

x=a x=b
Since A, was arbitrarily chosen in .J, it results that
lim f(z) # lim f(=),
x—a x—b
which contradicts the assumption that & has property C, in p.
The following corollaries are immediate:
Corollary 1. If 8 is a C,-spread, then
LnM;R) #3
on each curve L € . If moreover  is not a pencil, then on each curve L € £

relint (L N Py(8)) # @.
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Corollary 2. If n e N and 8 is a Cy-spread, but not a pencil, then
relint (L N M,(R)) < T5,(2)

on no curve L € .
Compare [26].

Theorem 2. If ¢ is a Cy-spread and n is finite and even, then P,(8) <
int P, 1(8). Consequently V,(8) is rare and if P,(R) # @, then int P, ,(8)
# J.

Since the proof is essentially the same as that of Theorem 2 in [36]
(Theorem B of the Introduction), we omit it.

Question. Is U, .., 7,(2) rare?

Notice that from Theorem 2 it follows that the set of all points of even
multiplicity in D is of the first Baire category. Hence, if M (8) =g,
then most of the points in D are of odd multiplicity in the sense of Baire
categories. The situation may change if M (8) # @. We have examples
of spreads for which the whole set of points of finite multiplicity is of first
Baire category, but this will be published elsewhere.

An infinite analogue of Theorem 2 does not exist. We only have

Theorem 3. Let L be a Cy-spread with Py (8) # @. Then int P,(R) # &
for all finite n.

Proof. Let n < R,. Py (8) # @ implies P,,(2) # . By Theorem 2,
int P,,.,(8) # @, which yields int P,(2) # .

The following formulation includes both Theorem 3 and the last impli-
cation of Theorem 2.

Proposition. In a Cy-spread 8, P,(2) # @ implies int P(R) £ & for
each pair of cardinal numbers x < R, and v < 2(x + 1).

The next theorem shows that commonly encountered spreads are all in
fact C,-spreads.

Theorem 4. If the Cy-spread L is not a Cy-spread, then card Py (8) =c.
More precisely, if & has not property C, at p € C, then

relint (L(p) N Py () # 2.

Proof. If £ has not property C, at p, then there is a monotone sequence
{Pn}n-1 convergent to p,such that { <.L(p,) N L(p) > b= is divergent. Em-
ploying the functions ¢, ¢, f, and the arc 4 defined in the proof of Theorem
1, we can say without loss of generality that all p,’s belong to 4. Suppose

9(@) = —p. Then p~*(p,) > p~1(p) = b. But {f(p~'(p,)}7-, does not
converge. Let j, £ (j < k) be two limit points of {f (@~ (pn))}=1- It follows
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from Darboux’s property of f that for each point z € (j, k), the set f ~*(x)
has infinitely many components. This yields ¢(x) € Py (). Since

L(p) 0 Py,(8) > {(x): 2 € (j, k)}
and since the last set is open and nonempty, we obtain
relint (L(p) N Py (8)) # @.

Until now we have not considered V. (8); one might get the false
impression that this set must be void.

Theorem 5. There are straight Cy-spreads & with V (2) # &.

Proof. Let C be a circle with centre ¢, the points »p and —p be dia-
metrically opposite on C, and ¢r an arc on Csuch that —p < ¢ < 7 < p,
relative to a certain sense on C. We consider a Cantor set S on gr. Let L(p)
be the segment joining p with —p. Let s, ¢ (¢ < s < ¢ < r) be the end-
points of one of the (open) components of the complement of § in g¢r.
Let L(s) and L(¢) be the diameters of C' through s and ¢. Also, let 7 be a
curved triangle consisting of three convex differentiable arcs «, 8, y such
that « is tangent at ¢ to L(s), « and B have the same tangent at e N B}, B
and y have the same tangent at (8 N ), and y is tangent at ¢ to L(t), and
such that the distance between ¢ and any point of = is smaller than that
from s to ¢, see Figure 2. Now let L(z) be the (unique) chord of C passing
through x and tangent to 7, for each z € st. Repeat this construction for all
components of gr — 8. It is clear that

N L@ =,

XeS

q —P
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which implies ¢ € V(8). The conditions that & must satisfy in order to be
a C3-spread are also fulfilled for all points in ¢r and it is obvious that the
construction can be extended conveniently to the complement of ¢r.

The above process can be repeated in Xo-many different intervals, so
we can have card V. (8) = X,.

Question. Do there exist spreads L such that
card V(8) = ¢?
We study now connectedness properties of the sets M,(2) and P,(g).

Theorem 6. There are straight Cg-spreads £ such that M.(2) and P.(8)
are not 8-convex for any x > 3 and not connected for any x > 4.

Proof. Look at Figure 3. We make constructions similar to that of the

preceding proof, in the intervals gr and ¢'r’. The points a and b respectively
play the role of ¢. One can arrange so that the points of M,(2) lie only
in the union of the domains a and b. Let # move from r to ¢’ on C. Then
L(x) moves remaining tangent first to «, then to B. When = moves from
' to —gq, L(x) remains tangent first to y, then to 8, and finally to &. Since
8 is tangent to the line through @ and b, the intersection I, of this line
with D is a curve in € Thus M,(g) = P,(8) for each x and M (Q) =
{a, b}, which is neither @-convex, nor connected. Also, M (8) < a U b for
each ¥ > 4. Because M, () Na # 2 and M(8)NDb # a3, M) is
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disconnected (for x > 4). To see that M,(Q) is 8-convex for no x > 3, it
suffices to notice that a, b€ M (8) but § N L N M,(8) = &.

Also the set M (£) is not necessarily L-convex for any ¥ > 4. However,
for z = 3 we have

Theorem 7. For every C,-spread 8, M,(R) is L-convex.
Since the proof is easy we leave it to the reader.
Theorem 8. There are straight Cy-spreads without locally connected T.

Proof. Consider the example of a C,-spread which is not a Cj-spread,
given in the preceding section. We arrange that when extending {L(p,):
n € N} U {L(p)} to £, no new curve (chord) should pass through a. We
also arrange that L(p) be a line of symmetry for D and £; then the chord
of €' symmetrical to any L € @ lies in 8. Let

y=U{L(p) N L: Le g — {Lp)}}

We have a ¢ y. Since y has a nearest point to p, we can choose a point
a’ ¢y different from e and lying between a and y on L(p). For each
n € N, the (open) triangles a,b,, _1by, and a’,b,, _1b,,, where a’, and a,
are symmetric with respect to L(p), lie in 7.
Now, we easily see that a’ € T, but 7' is not locally connected in a'.
Since every Jordan domain is locally connected, Theorem 8 implies the
existence of straight C,-spreads such that 7' is not a Jordan domain.

Conjecture. For each Cg-spread, T is a Jordan domain.
We can prove only
Theorem 9. For each Cy-spread, T = int T.

Proof. Let £ be a Csspread. If N2 # @, then T =int T = &-
Suppose now N & = . Let 2 € 7. There exists a sequence of triangles
{T,}7_, and a sequence of points {y,}2_, convergent to z, such that
Y, € T',. Evidently {7',}°_; can be chosen so that the sequences {L(p,)} - ,,
{L(g,)}= 1, {L(ry)}2-, of those curves which include the triangle-sides are
convergent. Let L,, L,, L, be the limit curves respectively.

Case I. all of the limit curves are distinct. Then x belongs to the closure of
the triangle determined by them or is their common point. By Lemma 2
from [22], x € M ,(R).

Casell. L, = L, # L,. Then x obviously lies on the possibly degenerate
subarc of L, with endpoints (L, N L,> and g*(L,, L,), where g* is the
continuous extension of the function g, which appears in the Proposition

of the Introduction, to 2. Since (L, N L,> € M,(8) N L,, g*(L,, L,) €
My(2) N L, and M,(8) N L, is connected, we have x € M,(2) N L,.

Case I1I. L, = L, = L,. Then z coincides with ¢g*(L,, L,), hence
again z € M,(8) N L,
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Thus in any case x € M,(2) N L for some curve L € L.
Let now z €int 7. We have x € M,(8) N L for some L € £. Suppose

@ ¢ M,(8). Then z is one of the endpoints of the arc « = M,(2) N L. Let
U be a neighbourhood of « lying entirely in 7, and let ye U N L — «.
Since y € T, there exists a curve L’ € £, such that y € M,(2) N L'. But
from y ¢ «, it follows that L' = L and consequently y € o, which is impos-
sible.

Hence int 7 = M,(8). By Theorem 2 from [40] (Theorem F in the
Introduction), int My(8) = T'; therefore int 7' = 7.

In a first version of this paper we conjectured that 7' = int T for each
straight spread. We now know that this is not true. The mentioned exam-
ple preceding Theorem 3 is a straight spread € and not only M (£) but
also Py (f) is dense in D. It follows that P,(8) is dense in D. Then, by
Theorem 2, int P4(®) is dense in D too, whence, by Theorem F.T=
int M,(2) > int Py(2) = D. Thus int 7 = D. On the other hand, by
Theorem 11 (in the next section), M4(2) # D, hence T = int My(8) #
D =int T.

Results on Straight Spreads

In this Section we study straight spreads £. Let w be a point on the unit
circle St of the plane; there exists a unique line-segment L, in g with
direction w. We say that € has property C; in direction w, if & has property
0O, at the endpoints of L,

Theorem 10 (Hammer-Sobezyk [25]). Every straight spread has property
O, in almost every direction.

Proof. We extend the curves of the given straight spread € to lines in
the plane, choose two orthogonal lines among them, and consider a square
abed surrounding D and having its diagonals ac and bd on these lines (see
Figure 4). The square cuts on all the lines segments forming a new spread
@', which has property C, in direction w € 8* if and only if € has property
C, in direction w. To prove the theorem it will obviously suffice to show
that £ has property C, in almost every point of ab.

For each p € ab, let —p € cd be the other endpoint of L(p) € £'. Let o
be the distance from a to b and

f:10, a] = [0, «]

be the strictly monotone function associating to each z € [0, «] the distance
between ¢ and —p, where p € ab is at distance x from a. From an early
theorem of Lebesgue we know that f is almost everywhere differentiable,
which yields £’ has property C, almost everywhere on ab.

Theorem 11. For every straight spread £ and for almost every direction
w eS8,
relint (L, N T1(8)) # 2.
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e

ot /v : e
/

Figure 4

Proof. Consider w € 8* such that € has property C, in direction w. It
follows that the connected set L, N M,(L) is not open on the line LD L,
and therefore contains at least one of its boundary points (on L), say e.
Thus, at least two curves of € pass through e, whence ¢ ¢ C. It results that

relint (L, — M,(2)) # 2.
Since £ has property C, in almost every direction, the theorem follows.

Theorem 11 proves, in the case of straight spreads, GRUNBAUM’s
conjecture that 7',(2) # o (part of Conjecture 4.1 in [23]).

Order-Geometrical Properties of Starshaped Curves

This section contains a short order-geometrical study of strictly star-
shaped curves in the projective plane. It is included in this paper, because
spreads will be the only tool used.

Let € be a curve in the projective plane P and K the set of all points
x € P, such that every line through x meets € in precisely one point. € is
said to be starshaped if K # @, and strictly starshaped if int K # @. Of
course, any starshaped curve is Jordan and the complement of it is
connected. In the following, € will always be a strictly starshaped curve,
different from a line.

We can derive properties of € from results on spreads in the following
way:
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Let k € K and think of a representation of P as a union of a Euclidean
plane and a line at infinity not passing through k. Consider a circle ' with
centre k and included in K. By a polarity with respect to €, € becomes a
family of lines. It is now easy to see that if D is the bounded domain with
boundary C in the considered Euclidean plane, the intersections of these
lines with D constitute a spread 8. It is further not difficult to establish
that property C, of @ is equivalent with the property of € of having a
half-tangent in any point, property C, of € is equivalent with the property
of € having everywhere a tangent, and property C; of € is equivalent with
class C* for @.

The family of lines joining the points of a nondegenerate closed line-
segment o with a point non-collinear with o is called pencil. No confusion
is possible with the previously used notion of a pencil in a spread.

From Theorem A of GRUNBAUM it follows:

Theorem 12. Each point of €, with at most one exception, lies on some line
meeting € in at least three points.

Figure 5 shows such an exceptional point.

Figure 5

Let A () be the set of all lines through z € P.
Theorem A’ yields:

Theorem 13. For all points x € €, with at most three exceptions, there
exists a pencil in A (x), each line of which meets € in at least three points.

In Figure 6 we present a curve € with three exceptional points.
Let

Mx)={GeA(x):card @ N E > 2}.

Figure 6
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From the result in [38] we derive
Theorem 14. For at most one point x € € we have
cardGNE = 4
for all G € int M (x) with respect to the usual topology of A (x).

It is not yet known for at most how many points z € € we may have
card G N € = n for all G eint A (z), if n > 5. If n = 3, this upper bound
(the best) is c.

The Theorem in [26] implies:

Theorem 15. If n is an even number, then for at most countably many
points z € €,

cardGNGC =n
for all G € int A (z).

By Corollary 1, we have:

Theorem 16. If C has everywhere a tangent, then for all points of G,
without exceptions, there exists a pencil in A (z), each line of which meets
€ in af least three points.

Compare Theorem 16 with Theorems 12 and 13.
Corollary 2 implies:

Theorem 17. If n is finite and even and € has everywhere a tangent, then
for mo point x € € we have

card@NGCEC =n
for all G € int M (x).

Compare Theorem 17 with Theorem 15. Theorem 10 leads to the obser-
vation that € must have almost everywhere a tangent, which also follows
in a direct way from a corresponding property of Lipschitz functions.

From Theorem E we get:

Theorem 18. If f, g: € — € are continuous functions, then there exists
x € € such that z, f(x) and g(x) lie on a line.

We conclude this last section with the remark that its theorems are
oniy a small selection of properties of € obtainable by using systematically
the theory of spreads.
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