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1. INTRODUCTION 

Among the problems asked by participants at the 1974 meeting in Ober- 
wolfach, about  convexity, the following has attracted our attention: 

Let o~ be a class of  (convex) sets in R ~. We say that a set M c ~ is ~ -  
convex if, for each two distinct points x, y • M, there exists F •  ~" such that x, 
y • Fand F c M. Study the o ~-convexity for remarkable classes ~,~ (Zamfirescu). 

For example, the members o f ~  may be the usual closed segments, and in 
this case the o~-eonvexity is nothing else but the classical convexity; the 
members of 5 may be the lines in a vector space and then the Y-convex sets 
are exactly its linear manifolds (aNne subspaces); or the members of ~ may 
be arcs and ~-convexi ty  becomes the usual arcwise connectedness. 

The problem of describing the ~--convex sets may be difficult for easily 
defined classes Y. It is so-- in  the opinion of the authors--when o~ is the class 
of all 2-dimensional rectangles in the Euclidean n-space; this particular ~ -  
conve/xity will be called rectangular convexity or, shorter, r-convexity. The 
present paper deals with r-convexity for n = 2 and n = 3. 

Noting first that an open set in Nn is r-convex if and only if it is convex, we 
immediately pass on to the study of closed r-convex sets. We begin with the 
case n = 2; in the following statements, we shall say that a subset of [R 2 is: 
a strip if it is similar to {(x, y) • RY: 0 ~< y ~< 1}; a half-strip if it is similar to 
{(x,y) • RY: 0 ~ x, 0 ~< y ~< l}; extremely circular if all its extreme points 
lie on a circle. 

T H E O R E M  1. The following sets are r-convex: 
(A) every closed unbounded convex set whose asymptotic cone has its angular 

measure in [~r/2, 7r] w {2~r},' 
(B) the strips and the half-strips; 
(C) the compact 2-dimensional convex sets which are centrally symmetric 

and extremely circular. 
We conjecture that there are no other closed r-convex sets in the Euclidean 

plane; this is supported by the following results: 

T H E O R E M  2. The only non bounded closed r-convex sets in the Euclidean 
plane are those described in (A) and (B) of  Theorem 1. 

T H E O R E M  3. I f  P is an r-convex polygon, then P is centrally symmetric and 
extremely circular. 

T H E O R E M  4. I f  M is a compact r-convex set which is extremely circular, 
then M is also centrally symmetric. 
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T H E O R E M  5. I f  S is a compact r-convex set which is centrally symmetric, 
then S is also extremely circular. 

The description of all closed r-convex sets in Nn seems to be an even more 
difficult task. In the bounded case, we can only give several examples: a 
centrally symmetric extremely spherical (analogue to extremely circular) 
convex body without (n - 2)-dimensional faces, a cylinder K x [0, 1] with an 
(n - 1)-dimensional compact convex set K as basis, the intersection of two 
n-dimensional balls. So, one sees that there exist in Rn (n /> 3) r-convex sets 
which are compact but neither centrally symmetric nor extremely spherical. 

In the non-bounded case, we have obtained a result concerning the closed 
r-convex sets in Ra. Its formulation needs two definitions: Let $2 be the unit 
sphere; a closed spherically convex set A c $2 will be called q-large if there 
is no open quarter of $2 (a component  of  the complement on $2 of the 
union of two orthogonal great circles) which includes A. The intersection of 
the asymptotic cone of a non-bounded convex set B with S~ will be called 
asymptotic set of B. 

T H E O R E M  6. Let B be a non-bounded closed strictly convex set in R a having 
a strictly convex asymptotic set A ¢ $2. Then B is r-convex i f  and only i f A  is 
q-large. 

It is clear that the strict convexity conditions in the last theorem do not 
allow us to consider the non-bounded case as solved. However, we are 
optimistic and believe that Theorem 6 is true without supposing the strict 
convexity of A; the detailed investigation remains to be done. 

We shall use the following notations: d for the Euclidean metric; ab for 
the segment joining the points a, b; (a, b) for the line through the points a, b. 

The following sections present proofs of the above theorems. 

2. R E C T A N G U L A R  C O N V E X I T Y  IN THE P L A N E  

Proof of  Theorem 1. Let M be one of the sets described in the statement. It  is 
sufficient to show that any two points of the boundary aM are contained in a 
rectangle included in M. This is clear if M is of type (A) or (B). When M is 
of type (C), let K be its circumscribed circle. I f  no supporting line of M 
through a or b is orthogonal to ab, then it is easy to find a rectangle having 
a, b as vertices and contained in M. I f  there is a supporting line through 
a or b (say a) which is orthogonal to ab, three cases are possible: 

(1) a is not on K. Then a lies on a chord of K contained in aM, and the 
symmetry of M implies that ab is the side of a rectangle included in M. 

(2) a is on K and is a regular point of aM. Then a and b are diametral 
points of K and, because M has other extremal points of K (symmetrically 
disposed), ab is the diagonal of a rectangle contained in M. 

(3) a is on K and is not a regular point of 0M. Let L1 and L2 be the extremal 



RECTANGULAR CONVEXITY 319 

supporting lines of M through a and let R1 (resp. R2) be the ray with endpoint 
a, orthogonal to L1 (resp. L2) and meeting K\{a}. As b lies between R1 and R2 
on the boundary of M, which is centrally symmetric, it must belong to the 
image of LI or L2 under the central symmetry which preserves M. Hence ab 
is contained in a rectangle included in M. 

Proof of  Theorem 2. Let M be a closed and non-bounded r-convex set 
which contains no line. It is sufficient to show that if the asymptotic cone of M 
has its angular measure less than 7/2, then M is a half-strip. We do this using 
the following notations: B is the boundary of M; dl and d2 are the extremal 
directions of infinity of M; and L1 is the unique supporting line of M which is 
orthogonal to d~. Then we choose a Cartesian coordinate system as follows: 
the x-axis is L~ and the upper half-plane contains M; the angle between d2 
and the positive x-axis is at most ~r/2; the origin 0 belongs to M n L, which 
is contained in the negative x-axis. Now we distinguish two cases. 

(1) B n {x /> 0} and Lz n {x /> 0} are not tangent. Let The  the ray tangent 
to B n (x >/ 0} at 0 and {O, p} be the intersection of B with the bissectrice 
of Tand  the negative x-axis. It is clear that the segment Op cannot be the side 
of a rectangle contained in M. As M is r-convex, Op is the diagonal of a 
rectangle R included in M. But M does not meet the sets {y < 0} and 
{x < x(p), y < y(p)}. Hence R does not intersect these sets and there remains 
just one position for R, namely the rectangle {x(p) ~< x ~< 0, 0 ~< y ~< y(p)}. 
This implies first that the projection (k, 0) ofp on L1 belongs to M, and further 
that 

Mr~  {x ~< 0} = {k ~< x ~< 0, y >/ 0}. 

(2) B n { x  ~> 0} and L1 ~ { x  ~> 0} are tangent. Let C be the part  of  
B ~ {x ~< 0} which is above the line through O, orthogonal to d2. We define 
a map f :  C---> B as follows: if c ~ C, the line through O and orthogonal to the 
line ~O, c.) cuts B in O and in another point, denoted byf(c) .  T h e n f i s  con- 
tinuous, monotone (with respect to the natural orders along C and B) and, 
if c tends to infinity on C, then f(c) tends to O on B. So, there is a point Co 
of C such that, ify(c) > y(co), then 0 < x(f(c)) < -x(c),  which implies that 
the midpoint re(c) of cf(c) is in the half-plane {x < 0} (see Figure 1). For 
every point c with this property, we make the following construction: first 
we remark that the circle with centre re(c) passing through c also passes 

through O andf(c) ,  but does not contain the arc Of(c) of B in its convex hull, 
because B c~ {x /> 0} and L1 are tangent. Hence, the smallest circle with 
centre m(c) surrounding this arc, say S, has O in its interior. Let s be any 

point of S c5 Of(c) and t be the point of C n (re(c), s). It is clear that the 
segment st cannot be the side of a rectangle contained in M. As M is r-convex, 
st is the diagonal of a rectangle R c M. But M does not meet the sets 
{y < 0} and {x < x(t), y < y(t)}. Hence R does not intersect these sets, so 
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L~ 

Fig. 1 

that it has a vertex, say u, in {x(t)~< x < x(s), 0 <~ y <<. y(s)}. Now, u 
belongs to the circle S'  with diameter st. As the radius of S' is larger than that 
of S, u c a n n o t b e i n { 0  <<. x <~ x(s)}. As the centre ½(s + t) of S'  is in{x < 0}, 
u cannot be in {x(s + t) < x < 0}. Hence u is a point of{x(t) <<. x <<. x(s + t), 
0 <~ y <<. y(s)}, which means that M has points in this set. Finally, let c tend 
to infinity on C; then s tends to O and u tends to a point (k, 0) of the negative 
x-axis (it is clear that u cannot tend to the point at infinity of the negative 
x-axis). For this reason, x(t)  has a lower bound, which must be k. As M is 
closed, this implies that 

M ~ { x  ~< 0} = {k ~< x ~ 0, y /> 0}. 

In both cases, we find the same conclusion. Transposing dl and d2, we see 
that M must be a half-strip. 

Proof of  Theorem 3. Let P be an r-convex polygon. Let Pl and p[ be the 
endpoints of a diameter of  P and let m be the midpoint of pl  and p; .  Let K 
be a circle with centre m and passing through Pl and p[ .  The segment plp'~ 
cannot be the side of a rectangle contained in P, and the other two vertices 
P2 and p~ of this rectangle are diametral points of  K. I f  two points of P n K 
are diametral points, then they are vertices of  P. It  follows that the num- 
ber of pairs of diametral points of P n K is at least two and is finite, say i0. 
Let {Pl,P~}, {P2,P~} . . . . .  {P~o, P~o} be these pairs. The edges of P passing 
through p~ or p~ are lying in secants of K, so for each point p~ (resp. p'~), 
there is a neighbourhood containing no point of  P \ i n t  cony K (int cony K 
being the interior of  the convex hull of K) different from p~ (resp. p'~). Clearly 
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p D conv{pl,-p[ . . . . .  P~o, P~o}, which is centrally symmetric and extremely 
circular, and it shall be proved that P = cony{p1, p'~, , ,  ,, Pco, P~o}. 

Otherwise, it may be assumed thatp~p2 is an edge ofconv{pl,  p; . . . . .  P~o, P~o}, 
but not an edge of P. Let H (resp. H ' )  be the half-plane determined by the 
line ( p l ,  p[)  and containing P2 (resp. p~). Let L be the intersection of H and a 
supporting line of  P in pt  such that L contains an edge of P (see Figure 2). 

H, 

,H 

T 

:to 

P~ 

Fig. 2 

Similarly, let L'  be the intersection of H '  and a supporting line of P in p~ 
such that L'  contains an edge of P. Then L meets K in Pl and in a point qo 
with p~ ~ qo -¢ P'~ (1 ~< i ~< io). Let us choose q ~ L  n P with q ¢ Pl and 
sufficiently close to pl  that the angle defined by qp'~ and L'  is smaller than rr/2. 
Then qp'z cannot be the side of  a rectangle contained in P. As P is r-convex, 
qp'~ is the diagonal of  a rectangle contained in P, and the other two vertices 
u and u' of this rectangle are diametral points of  the circle T with diameter 
qp;. Since qqo and P;qo are perpendicular, T contains qo. Because of the 
supporting property of  L, the open small arc of T between q and qo does not 
contain any point of  P; it follows that, for example, u is contained in the 

small arc qoPl of T. Hence u = qo or u is a point in the exterior of  K. Now 
u, u' ~ P and P is compact;  thus, if we choose a suitable sequence of points q 
tending to Pl ,  the associated points u tend to a point ~ ~ P, and the associated 
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points u' tend to a point if' ~ P. Because u and u' are diametral points of the 
circles T tending to K, ~ and ~' are diametral points of  K. As p~ ¢ qo v a P~ 
(1 ~< i ~< io) and because each point p~ (resp. p'~) has a neighbourhood con- 
taining no point of P \ i n t  conv K different from p~ (resp. P'O, it follows that 
p~ ¢ ff va p~. This contradicts the fact that {Pl, P[} . . . . .  {P~o, P~o} are all pairs 
of diametral points of  P c~ K. 

Proof of  Theorem 4. Let K be the circle containing the extreme points of M. 
If  a is an extreme point of M, let us choose a point b in {x ~ M; d(a, x) >1 
d(a, y) for all y ~ M}. Then b is also an extreme point of M and ab cannot be 
the side of a rectangle included in M. Therefore, ab is a diagonal of a rectangle 
included in M. Since the other diagonal must be contained in M, the circle 
with diameter ab must be equal to K. This implies that the set of extreme 
points of  M is centrally symmetric, and the statement is proved. 

Proof of  Theorem 5. Let S be a compact r-convex set which is centrally 
symmetric. Let m be the centre of S and let K be the smallest circle such that 
S c cony K; then m is the centre of K and S c~ K contains two diametral 
points, say pl  and p[.  The segment PlP'I cannot be the side of a rectangle 
contained in S. As S is r-convex, PlP'~ is the diagonal of a rectangle contained 
in S, and the other two vertices P2 and p~ of this rectangle are diametral 
points of K, hence S n K contains at least two pairs of diametral points. 
Clearly S 2 conv(S n K), which is centrally symmetric and extremely 
circular, and it shall be shown that S = conv(S n K). 

Otherwise, there exists a ray starting in m and meeting 0 conv(S n K) in a 
point c and ~S in a point different from c (where ~ means the boundary). 
Thus c ~ S n K and it may be assumed that c ep~p2, hence PlP2 c 

conv(S n K). It follows that the open small arc of K between pl and P2 
does not contain any point of  S, and that PaP2 n ~S = {p~, p2}. Let now 
H (resp. H') be the half-plane determined by the line (p~, p[ )  and containing 
P2 (respl p~). Let L be the intersection of H and the supporting line of S in pz 
for which the angle c~ between L and p~p'~ is minimal. Let L'  be the image of L 
under the central symmetry defined by m, and let c~' be the angle between L' 
and p~p'~. Clearly a = ~' ~< rr/2. The two cases ~' < rr/2 and c~' = 7r/2 are 
treated separately. 

(1) a' < rr/2: Let q E H n  OS, q ~ pl be sufficiently close to pz that the 
angle between p'~q and L'  is smaller than ~r/2. As L'  is contained in a supporting 
line of S which does not meet the exterior of  K, p'~q cannot be the side of a 
rectangle contained in S. Since S is r-convex, p'~q is the diagonal of a rectangle 
contained in S, and the other two vertices u and u' of this rectangle are dia- 
metral points of the circle T with diameter p'zq. T meets K, in addition to p[ ,  
in a point p. Clearly q ~ pp~. As q and p~ are on the boundary of the convex 
set S, the open small arc of T between q and p does not contain any point of 
S; the open small arc of  Tbetweenp~ a n d p  is in the exterior of  K, hence it too 
does not contain any point of S. It follows that u or u' is equal to p, hence 
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p a S. Now Pl is in the exterior of  T, and because q ~ PlP2, P2 is in the interior 
of  T, thus p lies in the open small arc of  K between pl  and p~, in contradiction 
to the fact that this arc does not contain any point of  S. 

(2) a' = a = 7/2:  Let az be a point of  the boundary  curve of  S between 
Pl and P2 such that the angle/3 between aim and p~m is smaller than rr/2. Let 
a2 be the unique point of  K c~ H '  c~ (a~, m). Let A be the intersection of  H '  
and the line bisecting the angle between pzm and a2m. Let W~, W2, W3, W4 
be the cones with vertex m as in Figure 3. Also, v ~ A, v ¢ m, v ~ int S. We 
choose now a point  zo(v) ~ 0S ~ Wz with 

d(zo(v), v) = sup{d(z ,  v); z ~ S c~ V/~}. 

From a = 7r/2 it follows that  zo(v) ¢ p~. Let Zo(V) ~ ~S be the image of  zo(v) 
under the central symmetry defined by m. The line (zo(v), v) meets 0S, in 
addit ion to Zo(V), in a point zz(v). I f  m~(v) is the midpoint  of  Zo(V)z~(v), then 
(m, ml(v)) is parallel to (Z'o(V), zl(v)). Let 7(v) be the angle between zz(v)z'o(V) 
and zo(v)z'o(v), which is also the angle between ma(v)m and zo(v)m. Let now v 
tend to m. 

Fig. 3 

As K is the smallest circle such that  S c conv K, we have d(zo(v), m) <~ 
d(pl,  m); on the other hand, d(v, pl)<~ d(v, zo(v)) for all v, hence 
d(lim~_.m Zo(V), m) = d(pl, m). As the open small arc of  K between Pl and P2 
does not  contain any point  of  S, it follows that  lim~_~,, Zo(V) = pl.  Then 
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l i m ~ m  So(v) = P'I and limwm zz(v) = p'~. Thus, if v tends to m, the line 
(z'o(v), z~(v)) tends to the line containing L' ,  hence 7'(v) tends to c~' = ,r/2. 
Taking  into account  those limits, we conclude that  there is a 0 ~ A with 
Zo(~) ¢ a~, zl(V) ~ W4, and ml(~) a int Wa. 

F r o m  the definition of  zo(v), it follows that  zo(g)Zz(~) cannot  be the side of  
a rectangle contained in S. As S is r-convex, Zo(~)z~(~) is the diagonal  o f  a 
rectangle contained in S, and the other two vertices of  this rectangle are 
diametral  points of  the circle T with centre m~(O) and passing through 
Zo(~) and za(~). Because T n  (W~ w W2 u W3) contains a half-circle, we get 
the intended contradict ion in showing that  this arc of  T contains no point  
of  S except zo(~). 

Because of  m~(~)~ int W3, we have ~ c Zo(g)mz(~), g # mz(~). Hence it 
follows f rom the construct ion of  Zo(V) that  T ~ W~ does not  contain a point  
o f  S except zo(~). Fur thermore ,  p~ is in the interior o f  T. As A bisects the 
angle between plm and a2m, and because of  d(p~, m ) =  d(m, a2) and 
m~(~) ~ W~, we have d(m~(~), p~) >1 d(m~(g), a~), thus a~ is also in the interior 
o f T .  Hence T n  (W2 u Wa) is lying in the exterior of  K a n d  does not contain 
a point  o f  S. 

3. RECTANGULAR CONVEXITY IN 3-SPACE 

Proof of  Theorem 6. ' I f ' :  Suppose A is q-large and prove that B is r-convex. 
I t  suffices to prove that  for each pair  of  points x, y c ~B, there is a rectangle 

included in B and having x, y as vertices. Let ~ = (x - y) /d(x,  y). Since B is 
strictly convex, ~: # A. Let I?l, I'2 be the great circles through ~: tangent  to A 
and r l ,  r2 the contact  points of  I'1 and I~ ,  respectively. For  each point  
r a ~ A \ { r l ,  r2}, let j ( r )  be the other intersection point  o f  ?A with the great  
circle through ~: and r. The function j ,  extended to 0A by setting j(r~) = r~ 
(i = 1, 2), is then a cont inuous involution on 0A with fixed points r l ,  r2. 
Now,  let/3 ~ ~A. The set of  all farthest points f rom/3  on A is a connected 
subset of  ~A, since A is q-large. Moreover ,  this set has only a single point  
k(/3), because A is strictly convex. The function k, f rom ~3A onto itself, is 
fixed-point-free and continuous.  The func t ions j  and k must  then coincide at 
some point  ~ ~ ~3A. Let P be the great circle through ~: and ~. Also, let U be 
the plane through x parallel to the plane of  P. The asymptot ic  cone of  
H ~ B is 1 ~ n A, whose angular  measure is at least ~r/2. Hence, by Theorem 1 
there is a rectangle containing x, y and entirely lying in H c~ B. 

'On ly  i f ' :  Suppose B is r-convex and prove that A is q-large. 
Suppose on the contrary  A is not  q-large, i.e. there is a point  p c ?A such 

that  the distance ~ on $2 between p and the farthest  point  of  0A is less than 
~r/2. Consider the point  v ~ ~B having - p  as spherical image. (1) Let I~p be a 

<1) The exterior normal at v to aB is parallel to and has the same orientation as the vector 
- - p .  
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great circle o f  $2 supporting A a t p  and only atp.  Let II be the plane through v 
or thogonal  to the tangent in p to Fp. 17 contains the normal  N in v to aB. 
Let II + be the closed half-plane with boundary  N that contains all half-lines 
through v included in II  n B (if there is only one such half-line, choose 1~ + 
to be one o f  the two half-planes with boundary  N). Let 17 _ be the closure o f  
I I \ I I  +. The curve I I_  n ~B either has an asymptote L '  parallel (but not  
identical) with N, or has no asymptote.  Let L be a line in II _ different f rom 
and parallel to N such that, if L '  exists, the distance between L and L '  is 
greater than that  between L and N (see Figure 4). Let w = L n ~B. Cm 

~B n~ 

1 
~L N 

Fig. 4 

Let e = (~v/2) - ~ and suppose there exist two sequences of  points (x~)~% 1 
and (Yn)~=l such that  xn e L  n B, y ,  ~ B, d(w, x~) = d ( x , ,  y , ) ,  d(w, x , )  -+ oo, 
and the measure o f  the angle wx ~y ,  equals e. Then a certain subsequence o f  

W oo ( Yn)~ = 1 converges to a half-line originating at w, included in B and forming 
with L an angle of  measure (~r - e)/2. This half-line would correspond to a 
point  in A at the distance (~- - e)/2 > a f rom p, but such a point  does not  
exist. 

Hence, for some point  Xo e L n B, each solid circular cone Cx with apex x 
such that  x w  ~ XoW, with axis L and whose generators make an angle e with 
(L  - B)  u x w  has, as intersection with B, a set completely contained in the 
solid ball Kx of  centre x and radius max{d(x, y) :  y e Cxo n c~B}. 

(m We ident ify a s ingle poin t  set with the  poin t  itself. 
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Let now x be such that xw D XoW and let Zx ~ 8Kx ~ Cxo n 8B. It is obvious 
that d(w, x) -~ oo implies Zx -+ v. Let z; be an intersection different from zx 
(if any) of the line through x and zx with 8B. When zx is sufficiently close to 
v, Zx exists and the ball Jx with diameter Z,cZ'~ contains Kx. 

Let G,c be the great circle of  J~ tangent in z~ to the line orthogonal to L and 
XZx. For zx sufficiently close to v, let Hx be the half-sphere bounded by Gx, 

containing w in its convex hull. Let Mx be the set of points on Hx, the angular 
distance of which to z x on Jx is smaller than e (see Figure 5). 

,/ 
/ 

el I 

Fig. 5 

j ~  "S~  M x 

Suppose there exist two sequences (x,)[= 1 and (u~)[= 1 such that xn e L n B, 
d(w, x~) -+ ov and un e B c~ H x , \ M x , .  Then a certain subsequence of  (zx Un)~= 

converges to a half-line originating in v, included in B, lying in the half-space 
containing w and bounded by the plane through N orthogonal to U, and 
forming with N an angle of measure at least e/2. This half-line would corre- 
spond to a point of $2 different from p and lying on P~ or on the open half- 
sphere bounded by I'~ and disjoint from A, but there is no such point. Hence, 
there exists a point x~ e L  such that x o ex'ow, and for each x e L  with 
xw ~ X'oW, zx = B ~ H x \ M x .  



RECTANGULAR CONVEXITY 327 

Let M;  be the set symmetric with M,~ with respect to the centre of Jx. 
Suppose again there exist two sequences (x,)2= 1 and (t~)~= 1 such that x~ 
L n B, d(w, xn) -+ oo and t~ ~ M ; ,  ~ B \ C x , .  Let c~, be the angle between 
(x , ,  zx,) and (zx,, t ,).  Then, on the one hand, d(v, t~) ~ oo since tn ~ Cx,, 
and on the other some subsequence of (c~,)g=~ converges to a value v /> 
(~r - e)/2. This means that some subsequence of (zx, t~)g=l converges to a 
half-line originating in v, included in B and forming with N the angle v, 
which is impossible. Thus, for some x; ~ L and for all x ~ L with xw ~ xow, 
M;  n B \ C ~  = ;~. Since for these points x, C~ n B c Kx, we also have 
M ~ n B n C ~ = z ~ , h e n c e M ~ n B = z ~ .  

t !  t It follows that ifxo, xo ~ xw, then M;  n B = z~ and B n H x \ M x  = z~, i.e. 

B n (I-L u M ; ) \ M ~  = z~. 

But since B is r-convex, and since the line through x and z~ is normal in z~ 
to 0B, the segment z~z'~ should be the diagonal of a rectangle included in B. 
The other two vertices of that rectangle must be diametral opposite points of 
Jx, whence one of them must lie on (H~ u M ~ ) \ M ~  and a contradiction is 
obtained. 

(Received May 10, 1978) 
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