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l. INTRODUCTION 

This paper is about continuous families of curves in Grfinbaum's sense [1], 
later called spreads [2]. 

Let C be a Jordan closed curve in the Euclidean plane and D be the 
bounded domain with boundary C. A family -2 of simple arcs i n / )  (further 
called curves) is a spread (continuous family of curves) provided [1]: 

(i) each curve in -2 (except its endpoints) lies in D and its endpoints belong 
to C, 

(ii) each point p ~ C is the endpoint of exactly one curve L(p) ~ -2, 
(iii) if L1, L2 are different curves of -2, then L~ n L2 is a single point, 
(iv) the curve L(p) depends continuously on p ~ C. 
The reader is invited to verify that, on C, the endpoints of any curve 

separate those of any other curve and that L(p) n L(q) depends continuously 
on p and q for p r q. 

We recall [4], [6]: 

Mx(-2) = (a ~ D: card {L e -2: a ~ L) /> x), 

Tx(-2) = {a e D: card {L e -2: a e L} = x}. 

The bounded component of the complement of the union of three non- 
concurrent curves in -2 is called triangle. Let T(-2) be the union of all triangles 
in D (compare [5]). 

A spread -2 is called degenerate if n s r ~. 
We are mainly interested here in the following conjecture and in properties 

of T2(s and T(-2). 

CONJECTURE (Griinbaum [2]). For each nondegenerate spread -2, 

T~(L) # ~. 

We say that the spread -2 has property C3 in p e C if 

p , ,  q~ e C (n e ~)  1 

L(p,) # L(q,) (n e ~ ) l  ~ {L(p,) n L(q,)}~~ converges. 

Pn, q, --+P 

-2 is a C3-spread if it has property 6'3 in all points of C (see [7]). 
For example, the family of  all area-bisectors of a plane convex body, the 

family of all diameters of  a plane convex curve with finite positive curvature 
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everywhere and the family of all perimeter-bisectors of a plane convex curve of 
class C 1 are Ca-spreads. In view of an application of Theorem 1 we also 
remark that for an arbitrary (not necessarily of class C 1) plane convex curve, 
the last spread mentioned above has property Ca almost everywhere. 

Let 

C(,~> = {p ~ C:L(p) r~ T,(8) ~ ;~}. 

Also, let (p, q) be the single point of the set L(p) c~ L(q) for L(p) ~ L(q). 
For p e C, we denote by - p  the other endpoint of L(p). 
If  p, q e C and q -r - p ,  then pq denotes that arc of C with endpoints p and 

q, which does not contain - p .  If  x, y ~ L and L e s then xy denotes the 
subarc of L with endpoints x, y. 

By int A, .~, ~A we mean the interior, closure, frontier of A in the topology 
of the plane and by int + A the interior of A with respect to the topology of 
s o m e L ~ s  i nca seA  c L o r A  c C. 

Throughout the paper, only nondegenerate spreads will be considered, and 
this will not be !mentioned further. 

For  a general discussion of spreads with historical and bibliographical 
notes see Grfinbaum [2]. For further developments on arbitrary spreads and 
on spreads under continuity restrictions (like property Ca) as well see 
Zamfirescu [7]. 

2. ON THE EXISTENCE OF DOUBLE POINTS 

In this section (only) C will be a circle, which is no topological restriction. 
The following result was promised (without being made precise) in [6]. 

THEOREM 1. I f  ~ is a spread with property Ca in some point of C, then C(2~ 
has positive Lebesgue inner measure and is not rare on C, whence T2(~.) is 
uncountable. 

Proof. Let 

q~(q) = { lim (p~, q) :p, ---> q, p~ # q and {(p~, q)}~= 1 converges}, 

where q ~ C. We remark that q~(q) is a closed set with at most two connected 
components, possibly reduced to a point, like for instance in case q equals the 
point p, in which ~ has property Ca (see Figure 1). 

Since s is nondegenerate, L(p) n M2(.2) is a nondegenerate (not necessarily 
closed) arc 7. At least one of the endpoints of ~,, say a, does not coincide with 
q~(p) and thus belongs to 7'. Obviously q~(q) --> q~(p) for q --up, because .s has 
property Ca in p (the convergence is considered with respect to the Hausdorff 
metric in the space of compact sets). Let L(r) ~ a with r r p. Since q~(p) r L(r), 
there exists a neighbourhood A o f p  such that q~(q) and q~(p) are on the same 
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side of  L(r) for all q E A. One of the endpoints ofL(q) n 3/2(s lies on L(r) or 
is separated from 9(q) by L(r). Let e(q) be this endpoint. We have e(q) 
e M2(s 

Suppose for each neighbourhood B' of p, there are two distinct points x, 
y e B' such that L(x)  and L(y)  meet in a point on L(r)  or separated from 
9(P) by L(r). But because ~ has property (73 in p, 

lim (x, y )  = ~o(p) 
X , y ~ p  

Xq:Y  

and a contradiction is obtained. Thus there exists a neighbourhood B c A 
of p, such that for each point x e B no other curve with an endpoint in B 
passes through e(x). Suppose e(x) e M3(s for some x e B n pr. Then there 
are two curves L(x'),  L(x") with x', x" e p r  - B, which meet in e(x). I f  now 
y ~ B, e(y) ~ M3(s and L(y'),  L(y") are curves analogous to L(x'),  L(x"), then 
x ~ y implies 

int + x' x " n int + y' y" = ;~ . 

It  follows that 

{x e B: e(x) e M3(s 
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is countable. Thus, A being the Lebesgue inner measure on C, 

)~C~z) /> AB > 0 

and C(2) n B is dense on B. From AC(~) > 0 it follows that C(~) is uncountable, 
whence Tz(~) is uncountable too. 

For arbitrary spreads Griinbaum's conjecture remains open; for spreads 
with line-segments as curves it is proved by Theorem 7. 

3. ABOUT THE SET T(~) 

A Jordan arc is called 2-curve if it is the union of two arcs lying on curves in 
s A set S c D is called an L2(~)-set if each pair of points in S are joined by a 
2-curve lying in S (compare [1], [4]). 

THEOREM 2. In an arbitrary spread ~, T(~) is a simply connected L2(~)-set. 
Proof  Theorem 1 from [4] states that M3(~) is an L2(~)-set. In its proof it 

is shown that for each pair of points x, y ~ M3(s there exists a 2-curve 
xz u zy c T( .2)w {x, y}. Now, if we choose x, y ~  T(s we also have 
x, y ~ Ma(s (see [1]) and hence we get a 2-curve completely contained in 
r(~). 

By Theorem 3 of Griinbaum [1], M2(s is s (i.e. the intersection 
with every curve in .~, is empty or connected) and connected. It follows that 
M2(s has a connected complement, for, if z were a point in some bounded 
component of the complement of M2(s then any curve of s through z 
would intersect M2(-~) in more than one component. Then also int M2(s 
has a connected complement since a set remains connected when adding 
boundary points. Since T(s is connected and equals int Mz(s by Theorem 2 
in [5], it follows from Theorem VI.4.1 in [3] that T(s is simply connected. 

We prove now a conjecture from [7]. 

THEOREM 3. In each C3-spread s T(~.) is a Jordan domain. 
Proof. We show that T(s is uniformly locally connected. Let {x,}g=l 

and (y,}~o= 1 be two sequences of points of T(s converging to the same point 
z. Let L(~:I,), L(~:2,), L(~:8,) (respectively L(~z~), L(~,) ,  L(~ , ) )  be the curves of 
s forming a triangle containing x,  (respectively y,). We can suppose without 
loss of generality that all six sequences {~:z~}~= 1, (~c2,}~= 1, (~c3~}~= 1, (~1,}~= 1, 
(~2,}~=1, (~3,}~=1 converge. Let ~:1, ~2, ~3, ~1, ~ ,  if3 be their respective limit 
points. There are several possibilities for the mutual position of L(~:I), 
L(~2), L(~3), L(~I), L(~2), L(~3), and z; however we consider here in detail just 
two of  these. 

What we do now is to show that in any case T(-~) is locally connected in z. 
The case where z lies on none of the six curves is trivial. All cases with z 

on the boundary of some triangle with sides on the six curves are analogous to 
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the first one treated here. The differences between the proofs of  these various 
cases are only o f  a technical nature and do not  necessitate separate considera- 
tion. They do not  use property Cs. In  the (five) remaining cases at least 
two of  the curves L(~:I), L(~:2), L(~3) and at least two of  L(~I), L(~2), L(~a) 
coincide. The proofs o f  these are exactly like our  second proved case. They all 
use the property (73. 

We first consider the case shown in Figure 2. 
Let D(V) be that Jordan  domain with cqD(,/) c L(,/) u C, which contains 

(~:2, ~:a>, for each ~/e C with L(,/) n L(~:2) n L(sea) = ~ .  
Let 8 be a Jo rdan  domain containing z, such that  cq8 meets exactly twice 

each of  the curves L(~:I), L(~I), and g n L(~:2) = g n L(~:3) = ~.  There exists 
a natural number  m such that  for all n /> m, xn, yn e 3, <sez,, ~ ,>  e 8, and 
L(~:2,) n 3 = L($2~) n 8 = L(~:a,) n 3 = L($3,) n 8 = ~ .  For  such an n, we 
have x ,  e D(fln). 

Consider  the point  v s ~ n L(~:z) between ~:1 and z. Since v e M2(s there 
exists another curve than L(~:I), say L(v), passing through v. Let ~ be the 
connected component  o f  L ( v ) n  8 - D ( ~ )  containing v. There exists an 
m'  /> m such that  for all n >/ m',  x ,  and z lie on the same side o f  L(v) and 
either x ,  e D(~:I) or L(sel,) meets c,. I f x ,  e D(~:I), then x ,  and 8 c~ O(~:~) n D($~) 

q 

:2=~2 

f 
~In ~In ~I ~I 

Fig. 2 
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lie both in the connected set 8 n D(~:I) c T(-~). If  x~ q~ D(~:I), there is a 
point ~ ~ C between scl~ and ~1 such that x~ ~ L(~[~). Obviously L(~[~) 
also meets a in a point v~ and x,,v~ ~ z v .  Thus for n large enough x,~v,~ c 6 

and x~v,~ u v,~v ~ (8 n D(~:~)) is a connected set included in T(~) n 8 and 
containing both x~ and 6 n D(~:I) N D(~I) .  Analogously, for n sufficiently 
large, y~ and 8 n D(~:~) n D(~)  both lie in a connected subset of T(~) n 6. 

Hence x~ and y~ belong (for n large enough) to a connected subset of 8, 
which is included in T(s 

For the previous case we did not in fact use the property Ca of ~; thus we 
also briefly present a case the proof  of which essentially needs it. Look at 
Figure 3. We choose again the Jordan domain 8 around z avoiding sea and ~3; 
let x~, y~ ~ g. Since x~ ~ z and the vertices of the triangle determined by 
L(~:z), L ( ~ ) ,  L(~:2~) must converge to a unique point by property Ca, this 
point must be z. Thus x~u~ ~ z ,  where u~ is the intersection of L(sel) with a 
curve L(~:~) ~ x~ with ~ e ~:1~:2~. We define v~ analogously and get y~v~ ~ z ,  

hence u,~v~ - ~  z too. Thus, for large n, x~u~ w u,~v~ u v~y,~ ~ T ( ~ )  n 8, 

whence again x~ and y~ belong to a connected subset of T(~) n 6. 

gln ~2n ~In~~i__ ~i _ ~2__~2 
Fig. 3 
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Thus it is shown that T(s is locally connected in the arbitrary point 
z ~ T(s Since T(-~) is bounded, it is also uniformly locally connected by 
Theorem 13.1 in [3]. 

The simple connectedness guaranteed by Theorem 2 and the uniform local 
connectedness of  T(s  imply together, by Theorem 16.2 from [3], that 
T(s is a Jordan domain, and the proof  is achieved. 

It  is remarkable that asking s to be a C~-spread in Theorem 3 is not 
superfluous. This follows from the existence of spreads s for which T(s is not 
locally connected (see [7]). 

We also notice that from Griinbaum's inclusions M2(-~)c T(s and 
T(s c 3/3(s [1] it follows T~(-~) ~ OT(-2). 

4. R E L A T I O N S H I P  BETWEEN T~(~) AND T(~)  

PROPOSITION 1. In an arbitrary spread ~., for  each point a e OT(.2) there 
exists a point p ~ C such that 

a ~L(p )  - int+(L(p) n M2(.~)). 

Proof. Let a ~ 0T(s Since a e D, a e L(x)  for some x e C. We choose 
p = x if a is an endpoint of  or does not belong to L(x)  n M2(s Otherwise 
there are two curves L(y),  L(z)  such that a e int+(x, y ) ( x ,  z )  and y e x z  (see 
Figure 4). We put t < t '  on yz  if t e int + yt ' .  Let 

H = (t e y z : a  eL(t)}. 

Obviously H # ~ .  Let h e H. I f a  is an endpoint ofL(h) n M2(s we choose 
p = h. I f  not, there is another point h' e y z  such that a ~ int+(h ', h) (y ,  h) 
(if h' were to lie on - z y ,  a would belong to the triangle determined by 
L(h'), L(y),  L(z), which is false). Suppose, to make a choice, that h' e yh. Let 

111 = (x  e H : 3 x '  e y x  such that a ~ in t+(x ', x ) ( y ,  x)} ,  

H2 = (x  E H: 3x' e x z  such that a e int+(x ', x ) ( y ,  x)} .  

Put hi -- inf / /1 .  Since H is closed, hi ~ H. 

Case I. hl e 111. In this case, there is a point h'z eyh~ such that a ~ int + 
(hl, h~)(y,  hz). Thus there is another point h~ e yh'~ such that a e L(h~). 
Since hE < h~, h~' r  I f  h~' 6 / /2 ,  then we choose p -- h~. I f  h~ ~ / /2 ,  put 
h2 -- sup (H2 n yhz). We have h~ # h2, otherwise a e T(s which is not true. 
Hence h2 < hx and h2 r  I f  h2 r  then we can choose p = h2. Suppose 
now h2 e H2. Because for each x q~ int + h'lhl, a e (x ,  h l X y ,  hi) ,  whence 
(x ,  h2) e ah2, there exists h~ e h~h'~ such that a e int+(h~, h2)(y ,  h2). Thus 
there exists a point h + e C such that h~ < h + < hl and a eL(h+) .  It  follows 
h + q~H~ u / / 2 ,  and so we can choosep  = h +. 
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Case H. hi r 111. We have only the case hi ~ Ha to consider. Let k ~ hlz 
be such that a ~ int+(k, h~)(y, hz). Consider the points k~ and k2 such that 
h~ < k2 < kz < k, k~ ~//1 and a ~ int+(k2, k~)(y, k l ) .  It follows that a lies 
in the triangle determined by L(k), L(k2), L(y), which is false. 

The proof  is achieved. 

PROPOSITION 2. For each C3-spread s and point p ~ C, 

L(p) n r (~ )  = I.(p) c~ M2(~) 

Proof. Since T(s = M2(~) by Theorem 3 in [5], the inclusion 

L(p) c~ T(~) = L(p) ~ M2(s 

is trivial. The proof  of the converse inclusion parallels the proof  of Theorem 8 
in [7] and is therefore omitted. 

THEOREM 4. In a C3-spread ~, for each point a ~ ~T(s there exists a 
point p ~ C such that a is an endpoint of  the arc L(p) n M2(s 

Proof. Theorem 4 follows from Propositions 1 and 2. 
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T H E O R E M  5. For each Ca-spread s OT(s - T2(s is the union of  a rare 
with a finite or countable set; thus, in the sense of  Baire categories, most o f  the 
points o f  OT(s belong to T2(~). 

Pro@ First we make some remarks concerning the proof  of  Theorem 1. 
With the notations from there, e(q) e 0T(s for all q e A, since on one hand 
e(q) e L ( q ) n  M2(s and 3/2(s ~ T(s on the other hand e ( q ) e L ( q ) -  
- M2(s and L(q) - M2(s ~ Cint M2(s = [IT(s by Theorem 2 in [5]. 
Also, property Ca implies e(q)--> a for q -+p .  More generally, e is continuous 
on A. 

and 

Let 

Z = {z e OT(s 9p e C such that z is an endpoint ofL(p)  c~ M2(s 
and z # ~(p)} 

F = {z e OT(~): 9 nondegenerate arc fl c C such that Vx e fi, 
z e L(x)} .  

Consider the points a e 0T(s and p e C such that a e L(p). We can arrange 
that a is one of the endpoints of  L(p) n M2(s by Theorem 4. 

Suppose a e Z and p e C is the point from the definition of Z. Then (see 
the proof  of  Theorem 1), there exists a neighbourhood B o f p  such that the 
function e is injective and continuous on B and {x e B: e(x) e Ma(s equals 
{x e B: e(x) (~ T2(s and is at most countable. Thus e(B) is a neighbourhood 
of a on ~T(s on which all points except at most countably many belong to 
r~(s 

Now consider the case a e 0T(s - (Z u F) (see Figure 5). By Theorem 4, 
by the definition of Z and with the notation of the proof  of  Theorem 1, there 
exists p e C such that a = q~(p) is an endpoint of  L(p) r~ M2(s Let t e C be 
such that (x, p )  ~ (t, p )  a for all x e tp. Such a t exists because s has property 
C3 inp  and a = ~0(p). Let Xo e tp be such that (Xo, p )  e int+(t, p )  a and s e tp 
such that (s, xo) e int+(p,  Xo)(t, xo). Then (s, p )  e int + a(xo, p) .  Let G be 
the bounded domain with 

OG = ~ u (Xo, p)xo w xot u t(t, p) ,  

where ~o = (t,  p)(Xo, p) .  Suppose for each z e Xot, ~(x) e G. Then, locally, 
(x, s)  goes in direction - s  to s on L(s) when x runs in direction Xo to t. 
And since Xot is compact, this implies that - s ,  (xo, s),  (t, s),  s lie in this order 
on L(s), which is false. Thus, there is a point Yo e Xot such that ~(Yo) q~ G. 
Since cp is continuous and s has property (?3, there exists an open arc N~ c C 
containing Yo, such that ~o(x) q~ (~ and (x,  x ' )  q~ G for all distinct x, x'  e Nt. 
Denote by - a  the other endpoint of  L(p) ~ M2(~). By Proposition 2, a and 
-- a divide 0T(s in two arcs, each of which lies in the closure of  a component  
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o f  D - L(p). Because int (s,  p)(s,  t X t ,  p)  c T(s only one o f  the above  
two arcs meets G u int  § co; let J be this arc. Clearly the endpo in t  e(x) of  
L(x) n M2(s belonging to G u int + co lies on J for all  x ~ Nt. Since L(x) and 
L(x') do not  meet  in G u co for  x, x '  ~ Nt, e is injective on  Nt. Let  j be a 
subarc  o f  J with a as an endpoint .  There  exists a po in t  to on pt such tha t  L(to) 
meets j .  For ,  if  for all x ~ pq where q ~ pt, L(x) n j = ;~, then j must  lie a long 
L(p) on the arc  ap, which contradic ts  Propos i t ion  2. I f  we now rechoose 

t' ~ pro with the same p roper ty  as t, we get that  j contains  the arc  e(N~,). 
Since e(y) ~ q~(y), we have e(y) ~ Z for  all y ~ N~,. 

Let  now E be an  arc  o f  8T(~).  We  have either E c Z u F or  E - (Z  u F )  
:~ ~ .  In  the second case we saw that  there exists a nondegenera te  arc  in 
E n Z.  Thus 8T(s  - (Z  u F )  is rare  on OT(s F is at  most  countable .  Z 
is obviously open on 8T(s Thus  Z is a countable  un ion  o f  open arcs. Let  z 
be such an  arc. F o r  each po in t  a ~ z, we found  a ne ighbourhood  o f  a in z 
on which all points  except a t  most  countab ly  many  belong to T2(s This 
o b v i o u s l y i m p l i e s t h a t z  - T 2 ( s  T2 ( s  

Concluding,  OT(s - T2(s is the union  o f  a rare with a finite or  countable  
set, hence o f  first Baire category.  The theorem is proved.  
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5. D O U B L E  P O I N T S  IN S T R A I G H T  S P R E A D S  

If L* --+ L(x) (with L* ~ L(x)) implies the convergence of L* c~ L(x), then 
is said to have property C2 at x (compare [7]). 
By Theorem I, T2(~) is uncountable i f~  has property C3 at some point of C. 

Assuming only property C2, we get the following result. 

THEOR EM 6. I f  the spread ~ has property C2 at uncountably many points, 
then T2(!~) is uncountable. 

Proof. Let A be an arc on C which has more than No points in which 
has property C2, such that A does not contain x, - x  for any x. Let qb be the 
set of all points in A where ~ has property C2. For  every point x ~ (I), let 
~o(x) be again the point to which L(x) c~ L(y) converges when y --> x, y ~ x, 
and let 

Z(x) = M~(~) n L(x). 

Clearly, E(x) is a nondegenerate arc and q~(x) e Z(x). Let g(x) be the endpoint 
of  E(x) separating int Z(x) from x (see Figure 6). Let 

B+ = {x ~ ~:~o(x) ~a 4 - x ) } ,  

B_  = {x ~ o :  ~0(x) ~ 4 x ) } .  

Of course, one of these sets, say B+, is uncountable. 

Iat~ 

i ~ (x) j 6(x) 

Fig. 6 

;r 

A 



216 T U D O R  Z A M F I R E S C U  

It  follows f rom the continuity of (x, y)  as function of  y that, for each 
x E B+, ~ ( -  x) e M2(-2). 

Every (nondegenerate) subarc (with endpoints) of  A containing just count- 
ably many points of  B+ may be extended to a maximal such subarc A~. 
The family {A,}~z of all such subarcs is obviously countable. Then 

B* = B+ - (,..) At 
t e l  

is uncountable. 
We observe that a ( - x z )  v a a ( - x 2 )  ifx~, x2 e B*, xz r x2. Suppose indeed 

that a ( - x ~ )  = a ( -x2 ) .  Then a ( - x ~ )  eL(z) for all points z between xl and 
x2 on A, which implies 

~ ( - x l )  = ~ ( - z )  = ~0(z), 

whence z r B*, in contradiction to the definition of B*. 
Let 

E = {x e B* : ~ ( -  x) e M3(-2)}. 

We consider x e E and denote by C* one of the arcs of  C with endpoints 
x, - x .  Let Ix be an arc in int C* such that a ( - x )  eL(u) for each endpoint 
u of  Ix. Since x e B*, the set 

B = {y e B* C~ C*: y separates x f rom Ix} 

is uncountable. 
After taking a point xl e B N E and the corresponding arc Ixl, it becomes 

clear that Ix1 separates xl f rom Ix; also, for each point y e B c~ E between 
x~, x2 e B n E, the associated arc I v lies between Ix1 and Ix~, disjoint from 
them. Thus it is seen that the application associating Ix to x is injective into 
a countable space. Therefore B n E is countable and B - E uncountable. 
Since the involution x ~ -  x and a are injective, T2(-2) is uncountable. 

For straight spreads, i.e. spreads the curves of which are line-segments, 
we showed in [7] that T~(-2) r ~. The next theorem completes this result. 

T H E O R E M  7. For every straight spread s T2(-2) is uncountable and T2(-2) 
meets every curve of-2. 

Proof. Every straight spread has property C2 almost everywhere [7]. Thus 
the hypotheses of  Theorem 6 are verified. Also, we see from the above proof  
that there exists a point PA in T2(-2) n L(a), for some a E A, if  the arc A on 
C has uncountably many points at which .2 has property C2. In the present 
case, each arc of  C has uncountably many points at which s has property 
C2. Let x E C and {A.};=I be a sequence of arcs on C converging to {x}; 
then {pA,}~~ has a limit point on L(x). Hence T2(s meets every member 
of -2. 
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