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Typical starshaped sets

TUDOR ZAMFIRESCU

Dedicated to Professor Otto Haupt with best wishes on his 100th birthday.

Starting with V. Klee’s paper [2] from 1959, several generic results on convex sets
(see the expository article [4]) have been obtained. We speak about “typical” or
“most” members of a Baire space, if those members not considered form a set of first
category. Results on typical elements are usually called “generic”. We shall obtain here
several generic results on starshaped and n-starshaped sets, which are closely related
to convex sets.

The space J of all compact starshaped sets in R?, endowed with the Hausdorff
metric 6, being closed in the space of all compact sets, is a Baire space.

In the first section we describe most sets in 7, in the second we investigate typical
intersections of sets in Z, and in the third we introduce and investigate typical n-
starshaped sets, which generalize the common notion of a starshaped set.

If we impose the condition that the kernel of the starshaped sets must include a
given convex body, we get a subspace of 7 which is again a Baire space, being closed in
7 . The typical members of this Baire space are studied in [5].

We shall use the following notations. Let S;_, be the boundary of the unit ball
B — R’ For any 2-dimensional flat F, let p; denote the orthogonal projection on F.
Also, for any set S = R¢, points 4, v, w € R and number r € R, let conv S be the convex
hull of S, diam S the diameter of S, rS = {rs:se S}, u + S ={u + sise S}, uw =
conv {u, v} and uvw = uv U vw.

Thanks are due to a referee for his or her useful suggestions.
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1. On most starshaped sets.

THEOREM 1. For most compact starshaped sets, their orthogonal projection on any 2-
dimensional flat is nowhere dense.

Proof. Let 7, be the family of all sets T'e J such that, for some 2-dimensional flat F,
prTincludes a disk of radius n~'. We show that 7, is nowhere dense in . Let O be open
in. 7. Choose T € O and ¢ > 0. Let G, be the set of all points in §Z¢ at distance at most ¢
from T. Clearly, 6(7, G,) < &. Choose a point x in the kernel of 7. The union G, of all
segments joining x with points in G, also satisfies 6(T, G,) < . For & small enough,
G;e 0. Let

&= lx—yl
yeG,

Consider a number « > 0 and the set H, = G. + aB. For
a < nn?(2¢ + mcard G,)!

and for every 2-dimensional flat F, the area of ppH, is less than nn2, and therefore
does not contain any disk of radius n~!. For every set P € J with (G, P) < o, P < H,.
Hence, for o small enough, every such set P lies in © and pgP includes no disk of radius
n!, for arbitrary F.

It follows that most sets T'e 7 do not belong to any 7, which means that p,T
includes no disk, i.e., pzT is nowhere dense in F, for any 2-dimensional flat F.

COROLLARY. Most sets belonging to I~ are nowhere dense and their kernels consist of
precisely one point.

The first assertion is a trivial consequence of Theorem 1. To prove the second,
observe that the family of all segments is nowhere dense in . Suppose now x and y
belong to the kernel of a typical Te 7 and x # y. Then T is not a segment, so there
exists z € T not on the line through x and y, conv {x, y, z} = T and the orthogonal
projection of T on the 2-dimensional flat determined by x, y, z includes a disk, which
contradicts Theorem 1. This proves the corollary.

By the Corollary, a typical starshaped set T has a single point & in its kernel. Thus,
T is a union of line segments meeting each other only at k and joining k with points
forming a set Q(T). Thus, Q(T) = Nn{Q*:T = u{xk:x e Q*}}. Let 7’ be the residual
space of all starshaped sets with single point kernels.

Let, for any T e 7,
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W) = {—lwc ~Kxe Qm},

Ix — kIl
U(T) = {lx — kl:xe Q(T},
s(T) = max U(T).

It is interesting that, in spite of the fact that most starshaped sets are nowhere dense,
the following two theorems hold.

THEOREM 2. For most sets Te ', V(T) is dense in S;_,.

Proof. Let 7, be the family of those sets Te 7 such that S;_, — V(T) includes an
open disk of (angular) radius n~*. It is obviously enough to prove that 7, is nowhere
dense in 7. First we show that the set 7, is closed. Suppose, indeed, we have a sequence
{T;}2, with T; € 7, convergent to some T'e J".

Then the kernels {k;} of T; form a sequence convergent to the kernel {k} of T. Every
S;-1 — V(T includes an open disk D; of radius n~!. Suppose the sequence {3,},‘“; "
converges to a closed disk D < S,_, of radius n™* (otherwise take a subsequence). If
for some y e Q(T), ||y — k| "*(y — k) eint D, then some sequence {y;}{2, with y; e
Q(T,) must converge to y; but this implies

Iy: = k™0 — k) — lly — kI — k),

which contradicts 3, — D. Thus T € J,. Hence 7, is closed and it only remains to be
shown that 7’ — J, is dense. Let O be open in 7. We choose a set T’ € () with a single
point kernel {k’}, such that Q(T") is finite (as in the proof of Theorem 1). We can add
to T’ several segments joining k” with the points of a finite set such that
1) the new set T still lies in @ — the new segments are chosen short enough — and
2) S;_, — V(T”) includes no disk of radius n".
This proves that J, is nowhere dense in J and the theorem follows.

THEOREM 3. For most sets Te J ', U(T) is dense in [0, s(T)].

Proof. Let F, be the family of those sets Te 7 for which U(T) n I = @, I being
some open interval of length n! contained in [0, s(7)]. To prove the theorem it
obviously suffices to show that Z, is nowhere dense in 7. We first prove that J, is
closed. Let, indeed, T, — T with T; € 7, and T e J . Clearly, if {k;} is the kernel of T;
and {k} the kernel of T, then k; — k. Also, s(T;) — s(T). We may suppose (otherwise we
take an appropriate subsequence) that the open intervals I; < [0, s(T;)] such that



Vol. 36, 1988 Typical starshaped sets 191

U(T) n I; = @ satisfy Z—-» I for some closed interval I < [0, s(T)]. If, for some
x€ Q(T), x — k| eint , then some sequence {x;}{2, with x; € Q(T;) must converge
to x. This yields

lxi — kill = lx — &,

which contradicts 7, — I. Thus T € Z,, whence 7, is closed and we only have to show
that 7’ — J,is dense. Let O be open in . We choose a set T” € 0, such that (T)is
finite. Let j be the middle point of an arbitrary interval I’ of length n! included in
[0, s(77)] and let xo € Q(T") be such that ||x, — k| = s(T’). We consider a point x, at
distance « > 0 from the segment joining k to x,, such that ||x; — k|| = j and the line
through k and x, does not meet Q(T”). Let T” be the starshaped set with kernel {k} and
O(T") = Q(T") v {x,}. For a small enough, 7" € O. Since there exist finitely many
intervals of length n~! covering [0, s(7")], we may repeat the procedure finitely many
times and eventually get a set Te O — ,.

THEOREM 4. Most starshaped sets are not locally connected at any point outside the
kernel.

Proof. Let 7" be the family of all starshaped sets T e 7 which are locally connected

at some point x #+ ky, {k;} being the kernel of T. Thus 7 = J 7 where

n=2

I n={TeT":Axy with ||x; — ky|| = n'}.

To prove the theorem it suffices to show, for fixed but arbitrary n, that 7/ is of first
category.

Each T € 77, being locally connected at x, there exists an ¢ > 0 such that for any

pair of points

vze(xr+eB)nT,
0
there exists a continuum C < x; + n~2B containing y and z. Thus 77 \J . where
m=1

Im={TeT Ny, ze(xy + m'B)n T,3C < x; + n"2B with y,ze C}.

We show that 7,,is nowhere dense in 7. First let us prove thatitis closedin 7. Let
T;— TwithT;e 7, and T e 7. Then kr, — k;. We may also suppose that, if xr,is the
point at distance at least n~! from kr, where T; is locally connected, then {xr}i24
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converges (otherwise consider a subsequence) to some point x € T, for which, then,
x — k|| > n* as well. For any choice of y,z in (x + m™B) n T, there are two
sequences {y;}{2,, {z:}i2 converging to y, z such that

yozi€(xr, + mB) N T,
because
(xr, + mB)nT,—>(x+m'B)nT

Now, T; € Z,, implies the existence of the continuum C; = x7 + n~2 B containing
y; and z;. Again we may suppose (see [3], §38. L, 1, p. 21 and §42. 11, 4, p. 110) that
{C;}2 converges (otherwise take a subsequence) to some continuum C.

Clearly y,ze C and C < x + n2B. Thus 7, is closed.

To finish the proof it suffices to show that 7' — 7, is dense.

Let © = 7 and T € O be such that V(T”) is finite. If (") < n”',thenT" ¢ 7. I
s(T") = n, for every x € Q(T"), consider a point x’ satisfying [|x — x|| < m! and
x — k|l = X" — kp|| (see Figure 1). Let Q’ be the set of all these points x". We
claim that the starshaped set 77 with k;- = k- and Q(T”) = Q(T") u Q’, which lies in
O if all |x — x’|| are small enough, does not belong to 7 ,,. Indeed, let xo € T” with
llxo — kgl = n'. Then there are x, x"€ Q(T) such that x, € xkx'. Choose ye
(xo + m'B) N xk; and ze(xo + m'B) N x’kp. Clearly, every continuum
containing y and z must pass through k; ¢ x, + n">B.

5z

Figure 1
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Thus, T" ¢ 7, 7' — I, is dense, and the proof is finished.

2. Typical intersections of starshaped sets.

We consider in this section the Baire space 9 of all pairs of starshaped sets in R
which meet in at least one point. It is easily seen that most pairs in 3 consist of
starshaped sets having the same properties as most sets in 7 . The reason for including
this short section is the following not difficult but interesting result.

THEOREM 5. For most pairs (Ty, T,) € 9, T, n T, is infinite for d = 2 and a single
point for d = 3.

Proof. Suppose first d > 3. Let 3, be the set of all pairs (T, T,) € 9 such that diam
(T, N T,) = n~'. We prove that 9, is nowhere dense. Let O be open in 3. We construct,
as in the proof of Theorem 1, the starshaped sets T; and T3 with (T, T € O, both
finite unions of segments. Of course we can arrange that

1) the kernels do not coincide,

2) precisely one (by inclusion) maximal segment in 7"} and one maximal segment in
T’ meet,

3) their intersection is a single point.
Thus, if

Uk =T+ ¢B (i=1,2),

then, for ¢ small enough, U,(g) n U,(¢) is connected and

lim diam (U,(¢) n U,(e)) = 0.

e—0

Let ¢ be such that

1) diam (U,(e) n U,(e)) < n! and
2) (Vy, Vy) €8, 8(V,, Th) < ¢ and 8(V,, T) < & imply (Vy, V) € 0.

Now choose (V,, V,) € 9 such that 6(V;, T7) < ¢ (i = 1,2). Then

VinV, < Uie) n Usye),
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whence

diam (Vy n V3) < nl.
It follows that 3, is nowhere dense in 9; therefore, for most pairs (7, T2) € 3,

diam (Ty n T3) = 0.

Let now d = 2. This time we define 3, in the following way: it consists of all pairs
(T, T,) € 9 such that card (71 n T2) < n. Let @ be open in 3. We construct as before
the finite unions of segments 71 and T3 such that (T{, T3) € 0. At least one segment
s1 of T1 meets at least one segment s, of T and it can be arranged that s; and s, do
not lie on a line. In any neighbourhood of s; we can add » + 1 segments to T}
originating at the kernel of 77 and crossing s, such that the new starshaped set T4
still satisfies (77, T3) € O. Now it is easily seen that, for ¢ small enough, each pair
(T, T,) with 6(T1, T1) < ¢ and 8(T>, T3) < ¢ has the property that

card (T nTy) > n + 1.

By choosing ¢ such that all above pairs (T, T) belong to ¢, we see that 3, is nowhere
dense. It follows that most pairs in 3 do not belong to | J 9, i.e. they meet at infinitely
n=1

many points.
This Theorem 5 was already used in Section 3 of [1].

3. On most n-starshaped sets
A set M < R? s said to be n-starshaped if its kernel
KM)={xeM:VNyeM3IWe2?,, with W c M}

is not empty, 2, , being the family of all polygonal lines homeomorphic to [0, 1],
joining x with y and consisting of at most » line segments.

It can be easily seen that, equipped with the Hausdorff metric 8, the space 7™ of all
n-starshaped compact sets in R? is a Baire space.

In contrast to starshaped sets, the n-starshaped sets with » > 2 need not be simply
connected. The following question naturally arises: Are typical n-starshaped sets
simply connected or not? From now on, n > 2.

THEOREM 6. For d > 3, most sets belonging to I ™ include no Jordan closed curve.

Proof. Let
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d .
Xgs Xq5 -+ -5 X, € R, Wiez . (i=1...,r

such that W; n W; = {x,} for i+ jand let e > 0 be such that
A = U W,- + EB
i=1

is simply connected, the natural number r > 2 being not fixed. We call 4 a spider of
head x, and breadth

br A:=inf{&: (W, + eB) n (W, + ¢B) < x, + %{B i #)n}

Notice that different spiders may have different numbers r of “arms”.
For each bounded set T < RY, let

A(T) = inf{br 4:the spider 4 includes T}.

Obviously, 4 is an increasing mapping, ie. T, < T, yields A(T,) < A(T,).

We show that for each Jordan (closed) curve J, A(J) > 0. Suppose, on the
contrary, there exists a Jordan curve J with 4(J) = 0. Then we get a sequence {4},
of spiders including J, such that br 4, — 0. By taking a subsequence if necessary, we
arrange that the sequence {c,},2 , of heads of spiders converges to some point ¢ of the
projective space P! > R? (see Figure 2). Let a, b be furthest points of J. Suppose, for
example, a # c. For each index u, a belongs to a certain set W, + (br 4,)B, W, being
a polygonal line with at most  line-segments lying in R? and having an endpoint at c,.
A subsequence of { W,}_, converges to a polygonal line W = P containing a and ¢
and having possibly self-intersections. Let w be in W n R? between a and c if b¢ W
and between a and b if b € W; the order a, w, c on W means that, for large u, there are
points a,, w,, ¢, € W, near a, w, c, in this order on W,. Then, clearly, for this large u,
there must exist two distinct points e,’, e,2 on the two arcs J*, J2 of J joining a to b,
both near w, such that

le, — wall <brd, (=12).

This implies e, — w, whence w belongs to both J! and J2, which is impossible.

Let 7 be the set of all Pe ™ with A(P) > m'. We show that 7™ is nowhere
densein 7 ™. Let O be open in ™, consider P € ¢ and let ¢ € (0, m™") be such that P’ e
I ™ and §(P, P’) < 4ed imply P’ € 0. Let
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Figure 2

Z c ¢7¢

be so that 6(P, Z) < ed. Fix q € K(P) and let ¢(Z) € Z have distance at most &d from g.
For each point p € P there exists We 2, , with W < P. Let p, p, p,, ..., p; q be the
segment-endpoints on W (j < n — 1). Let

P(Z)’Pl(Z),Pz(Z), .. ’Pj(Z) eZ

have distance at most ed from p, py, p,, ..., p; Thus, p(2), p,(Z), px(2),...,p(2),
q(Z) determine a polygonal line W, in 2, .. Consider, for every p(Z), the
polygonal line

W(p) € 2pz).02)

having exactly n pairwise non-collinear segments, such that
o(W,, W(p)) < ed

and such that for every pair of distinct points p'(Z), p”(2),
W(p') o W(p") = {4(D)}.

This is possible if d > 3. Then
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Z = L},W(p)

satisfies
NZ,2Z) < 2ed.

The set Z’ is the union of, say, k polygonal lines having pairwise only the point ¢(Z)
in common. Let v > 0 be such that Z’ + vBisa spider of breadth less than e. Clearly,
for each set J = Z' + vB, A(J) < m!. If P’ € 7" is such that

NZ',P) <,
then, on one hand,
P, P)Y< P, 2)+ &Z,Z) + NZ', P) < 4ed

and thus P’ e ), and on the other hand P’ — Z’' + vB, whence A(P’) < m! and
P ¢7 . 1t follows that 7 is nowhere dense in ™. Hence, for most P e I o)
MP) = 0.

Since, for each Jordan curve J, A(J) > 0, most sets in 7™ do not include any
Jordan curve. The theorem is proved.

COROLLARY. For d > 3, most compact n-starshaped sets are nowhere dense and
simply connected.

THEOREM 7. For d = 2, most compact n-starshaped sets are nowhere dense, but not
simply connected. In fact only those in a nowhere dense subset of ™ are simply connected.

Proof. The proof of the fact that most n-starshaped sets are nowhere dense is
similar to (and simpler than) the proof of Theorem 8 in the next section.

We shall show that the family 7 of all simply connected n-starshaped sets is
nowhere dense in 7™,

We saw in the second part of the proof of Theorem 6 that in anyopenset O < g™
we find an element T which is a finite union of polygonal lines with at most » line-
segments and with a common endpoint g € K(T) (see Figure 3). Let ¢ > 0 be such that
Ue 7™ and (T, U) < eimply U e 0. Now let g, ¢, € R? and Wie?,,(i=12)be
such that

() diam W; < ¢/2 (i = 1,2),
(ii) W; is not a union of n — 1 line segments (i=12),
(i) W, n T = {q} (i = 1,2),
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Figure 3

(iv) 3¢’ + g such that W, n W, = {q, ¢},
(v) ¢’ is not a vertex of W, or W,.

Let O, Q' be disjoint neighbourhoods of g, ¢’ respectively and let v € (0, ¢/2) be
such that for any polygonal lines W; with at most n line-segments satisfying
(W, W) <v(i=1,2),wehave

WinW,cQu{Q,
Wi WynQ #69,

and
WinTc Q (i=12).

PutT" = Tu W, u W,.Clearly K(T") = {q}. Let T" € J have distance at most v
from T". Then T” must include two polygonal lines meeting exactly twice: once in Q
and a second time in Q’. This shows that 7" ¢ 7. But T” € O since

T, ) <T,T)+ T, T)<v+eg2<e

This proves the theorem.

4. Typical n-starshaped sets with thick kernels.

If we impose the condition that K(M) contains a given convex body, for instance
the unit ball B, then the space 7§ of all such n-starshaped sets M < R?(d > 2)is again
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a Baire space. While every starshaped set (n = 1) is topologically a ball, we shall prove
here that most n-starshaped sets (n > 2) in 7§ have a quite different shape, for any
dimension d > 2.

THEOREM 8. Most sets belonging to T are nowhere dense outside B.

Proof. Let b¢ B. We show that the set # of those Pe 7 which contain b is
nowhere dense.

Let O = T be open. Take P e 0. Let ¢ > 0 be such that 6(P, P') < 4edand P’ €
T imply P’ € 0. Let y € B and

Zcy+ ezt

be such that (P, Z) < ed and no pair of points in Z are collinear with b.

For each pair of points pe P, g€ B, there exists We Ppq With W c P. Let
P, P1sPas - - -, Pjp q be the segment-endpoints on W (j < n — 1). Let p(2), p,(2),
p22),...,p{Z)€ Z, q(z) € Z n B have distance at most ed from p, p,, p,, . . . Py 4.
Thus we get a polygonal line W(p) € 2,z 4z For each z € B N Z consider the “ball”
B, consisting of all points in B at distance at most &d from z. Let

W(p) = W(p) v conv ({p(2)} U Byz)

and

Z = UPW’(p).

It is easily verified that §(Z, Z") < ed.
If b e Z’, then there are (finitely many) “cones” like

conv ({ p{(2)} N Byz)

containing b. Let p,’, ..., p,’ be the apexes of these “cones”, let p,”, ..., p,” be the
points playing the role of p;_;(Z), and let B,’, ..., B,/ be the “balls” playing the role of
B,z Denote by s; the intersection of the line through b and p;” with B;’. Let a; be a
point with [la; — p/|| < &, such that the angle a; p/’b is right and no pair of points
in Z U {b} are collinear with a,. Let C; be the set of all points x € B; such that the
measure of the angle xp;’b is at most 6 > 0, 6 being chosen so that é(s;, C,) < &. It
can be easily arranged so that
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b¢ C; = conv ({a;} L C).

Let
D; = (conv ({p/} v B) — conv ({p;/'} U C)) L C/.

The set

zZ = (Z’ — (Jintconv ({p;'} L C,~)> v JC va,p)
i=1 i=1
belongs to ¢ and 8(Z', Z”) < ¢. Clearly, b ¢ Z”.

Incase b¢ Z',let 2" = Z'.

In both cases let y be the distance from b to Z”. If P'e 7§ and 6(Z", P') <
min {ed, y}, then b ¢ P’. Since

P, PYS 6P, Z)+ &Z,Z)+ NZ,Z") + &(Z", P') < 4ed,

P’ € 0. Hence 4 is nowhere dense in 7§
Let Q be a countable dense set in R?. Then most sets in 7 §” are disjoint from Q —
B. This proves the theorem.
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