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Abstract. In this paper we show that from the point of view of the Baire categories
for most convex bodies no shadow boundary is included in a hyperplane. A related,
more quantitative question is also considered. It receives in general a negative answer
and in the C?-case a positive one, but remains open in the C'-case.

1. Introduction
At the Oberwolfach Conference on Convex Bodies in 1986, Franz Hering formu-
lated the following conjectures:
Let K <R’ be a d-dimensional convex body. For x¢ K, let 3(K, x) be the
shadow boundary of K with respect to x, i.e.,
(K, x)={ye K: aff{x, y}n int K =},
aff X denoting the affine hull of X = R

Conjecture 1. There are convex bodies K such that dim aff 9( K, x) = d forallx ¢ K.

Conjecture 2. For all convex bodies K and any € >0 there are an x £ K and a
hyperplane H such that

max{A(y, H): yed(K, x)} <eA(x, H),
where A(z, Z) means the distance from z € R? to the set Z < R“.
It is clear that the second conjecture becomes more interesting if we do not

allow x to go far from K. So let us require that A(x, K)=1. From now on we
always consider Conjecture 2 with this additional condition.
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We shall establish here the first conjecture and prove the second for a certain
class of convex bodies, including those with a boundary of class C?. In general,
Conjecture 2 is not true, as 1. Baridny recently discovered.

A topological space in which every open set is of the secorrd (Baire) category
is called a Baire space. We say that most elements of a Baire space have a certain
property if all those enjoying it form a residual set, i.e., the complement of a set
of the first category. Such elements are also called typical. It is well known that
the space ¥ of all d-dimensional convex bodies of R’ equipped with the
Hausdorff metric is a Baire space. (For a survey on properties of typical convex
bodies see [4] or [9].) For example, it is known that every convex surface has
almost everywhere a finite curvature in any tangent direction [1]. This curvature
may even vanish almost everywhere in any tangent direction (see de Rham’s
example of a convex curve of this type in [3]). Moreover, according to {7], most
convex bodies have such boundaries.

As usual, we think of the projective space P¢ as R? plus the hyperplane at
infinity. Clearly, the definition of 3(K, x) can be extended to any x € P*\ K.

We use the following notations: N(x) for the line through x and the point
of KeX closest to x, prA for the orthogonal projection of the set A on
the flat F, m, for the k-dimensional Hausdorff measure, and D(A, B) for
inf{||la—b|: ac A, be B}, where A, B<R”.

2. Proof of the First Conjecture
We prove Conjecture 1 by using Baire’s well-known theorem on categories.
Theorem 1. For most convex bodies K € ¥,
dim aff (K, x)=d
for all xeP*\K.

Proof. It is probably known and easily seen that the function s defined on P x ¥
by

s(x, K)=9(K, x)

is upper semicontinuous in both variables, with respect to inclusion and Hausdorff
metric. This means, for K € % and x € R% that, for any & >0, there exists a § >0
such that, for every K'e % at Hausdorff distance less than & from K and for
every x'e R? with || x — x'|| < 8, each point y € 3(K’, x) satisfies A(y, 3(K, x)) <¢;
similarly for K € % and x e PY\R%

Let

¥*,={K e¥:3x with A(x, K)=n"" and dim aff (K, x) < d}.

We are going to prove that %, is nowhere dense in #. Consider the open set
O c ¥ and choose Be @ smooth and strictly convex. By routine arguments we



On Two Conjectures of Franz Hering About Convex Surfaces 173

see the following:

(i) Putting, for any K € %,

v(K)=min{A(x, pni, (K, x): A(x, K)=n""},

the function v: ¥ >R is continuous and v(B)>n"".

(i) Putting, for any K € %,
w(K)=min{my (K~ H): H is a hyperplane, K n H # (J,
H1N(x),A(x, H)=v(K),A(x,K)=n""},

the function u: % - R is continuous and w(B)>0.

Put b=[d’/4]+d and let V.(b) be the maximal (d - 1)-dimensional Hausdorff
measure of a (d—1)-dimensional complex with b vertices, whose (one-
dimensional) edges have length at most ¢ each. Since V.(b)—>0 for £ >0, we
can find a number &,> 0 such that V, (b) < u(B)/2.

Now choose the polytope P e O close to B, such that:

(1) Its vertices are in general position, in particular, for any vertices
Uiyevny Uasr,afi{vy, ..., 000} =R? and, for any facets F,,..., Fai.,
without a common vertex, ﬂ,.d: aft F, = .

(2) The diameters of its facets are smaller than &,.

(3) »(P)>n"".

(4) u(P)>u(B)/2.

In order to prove that %, is nowhere dense, we now intend to show that P¢ X,
Suppose, on the contrary, there is a sequence of points {x;};2; and a sequence
of convex bodies {K;}{", converging to P with A(x;, K;)=n"', such that
dim aff (K, x;) =d — 1 for all i. Then ¢(K;, x;) = H; ~ bd K, for some hyperplane
H.. Since »(P)>n"', we have, from some value of i on, 3(K,, x;)= H;nbd K.

We may assume (take a subsequence if necessary) that {x;};., converges to
some point xo€ P and {H; n K;}72, converges to a compact convex set G. Then
{8(K;, x;)};~, converges to the relative boundary I' of G. By the upper semicon-
tinuity of 5, ' 3(P, x,) (see Fig. 1). Clearly, dimaff'=d -1, '=affnbd P,

.xo
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and G is a (d —1)-dimensional polytope. Of course,
A(XO, G) = A(X(), conv B(P’ x())) = A(XO’ HO)’

where H, is the hyperplane orthogonal to N(x,), which satisfies H,~ P # ¢J and
A(xg, Hy) = v(P)+A(x,, P)—n .
Since

pHOGDPﬁ HO,
we have
my_(G)=my_(pu,G)=my_ (P Hy)=u(P)>u(B)/2>V, (b).

Since every edge of G lies in some facet of P and therefore has length smaller
than &,, G has more than b =[d’/4]+ d vertices. Thus I" has more than d*/4+d
vertices, whereas (P, x) is the union of I' with at most d facets F,,..., F, of P
(not more, because of the general position of the vertices of P). Since the
intersection of a (d —1)-simplex with a hyperplane is a polytope with at most
d?/4 vertices, I' has at most kd*/4= d*/4 vertices in |J*_, F,, which implies that
more than d vertices of ' are vertices of P as well. But this contradicts their
general position.

It follows that P ¢ %,. Thus, %, is nowhere dense and | _, %, is of the first
category in J, which proves the theorem. O

Mani-Levitska [6] proved that—in the case of parallel “‘light rays”’—there are
classes of convex bodies K which can cover all their shadows (i.e., there is for
any x € R“\{0} a rigid motion ¢ such that ¢(p,:K)< K), and classes of convex
bodies which cannot cover all their shadows. He also observes (private communi-
cation) that every convex body which can cover all its shadows must have a
planar shadow boundary. This together with Theorem 1 shows that most convex
bodies cannot cover all their shadows. In fact more can be shown: those convex
bodies which can cover all their shadows form a nowhere dense set.

3. On the Second Conjecture

With Bardny’s kind permission, I reproduce here his example which shows that
Conjecture 2 is false. In R’, let a plane IT and a line A be orthogonal and consider
a circle C <11, an ellipse E <11 close to C, and a line segment S < A, all with
midpoint in I~ A. Let U be the union of all half-lines with the endpoint at one
endpoint of S and meeting conv C, and let V be the union of all half-lines with
the endpoint at the other endpoint of § and meeting conv E. The convex body
K =Un V is a counterexample to Conjecture 2.

We see that in the above construction, bd K has a vanishing Gauss curvature
at every smooth point, and any example based on Barany’s idea must have this
property. It is natural to ask whether or not the conjecture does however hold
for convex surfaces with a finite but not vanishing Gauss curvature at some point.
In this section we give an answer to this question.
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In order to formulate Theorem 2, let us denote, for K € %, by p/(x) and p;(x)
the lower and upper radii of curvature at x € bd K in the tangent direction 7 (for
definitions see [2]). If pj(x)=pi(x), let p"(x) denote the common value; then
we say that bd K has curvature (p7(x)) ' at x in direction 7.

Let N, be the outer normal (with z removed) at a smooth point z of a given
convex surface.

Theorem 2. If K € % and bd K has, for some smooth point z and every tangent
direction, a nonvanishing finite curvature, then, for x € N,, there is a hyperplane H,
such that

max{A(y, H,): yea(K, x)} .
A(x, H,)

0 a x-z

Proof. Let
H.={u:{u—-2z+x,x—z)=0}.

Also let 7 be a tangent direction in z and
r<p’(z)<r+e

Let C, be the half-circle of radius r tangent to bd K in z, lying in the half-plane
H bounded by the line L through x, z, in direction 7, and not disjoint from int K
(see Fig. 2). The line T through x, tangent to C, in a point ¢, cuts the circle C,
of radius r+ g, tangent to bd K in z, coplanar with the preceding half-circle and

C2
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surrounding ¢, in two points a, b. Let a’, b’, t' be the orthogonal projections of
the points a, b, t on the line L. Clearly, any contact point ¢, of the line through
x tangent to bd K n H has a point between a’ and b’ as projection on L. Let

0<r,<minp'(z)<max p'(z) <0

and, for every tangent direction 7, take r> r,. The indicatrix at z being convex
[2], the above use of “min” and ‘“max” is allowed and the extrema are neither
0 nor oo.

If a is the angle between T and L, then

lla—b|l=2vVe? cos® a+2re(1—sin a)
and
|t —x||=rcos® asin”’ a,
whence

la’=b'|? sinza( 5 1—sin a) 1,
= 462+ 8re——a ) <— (462 +8r ).
e —x||? r e st a rf( e’ +8ne)

On the other hand,
ri=(r=|lt' = z|)(r+|lx —z|),
which yields

It -z| 1 1
- = > .
le=xl 2+lx—zll/r 2+ |x=z|/n

Now, if x> z and ¢ > 0, then

t’_" a'_b'
[ TIR F
Jo=xl lr=x]

r-uniformly. Observing that

W=zl ) and x—z = Al Hy),

flx—z|
we get
H,
A(f’ x)_)1 and A(J,c,Hx)_)l’
It —z| = x|
whence
A tl H I_ ’
(H) o la=b

A(x, Hy) A(x, Hy)
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again 7-uniformly. Finally, from

A, H)=|a’' = b'| +A(t', H)

it follows
A(t,, H,)
—_—
A(x, Hy)
r-uniformly, which proves the theorem. O

4. Two Related Results

The main idea of Barany’s counterexample is to have at every smooth point a
vanishing curvature in one direction and a nonvanishing curvature in another
direction. This does not happen in the case of a typical convex surface. But a
typical convex surface does not satisfy the requirements of Theorem 2 either.

Theorems 3 and 4 below describe shadow-boundary properties which are
weaker than that required in Conjecture 2, but shared by most convex surfaces
in R,

Theorem 3. Let K € 9 possess a smooth point z € bd K and a tangent direction T
in z, such that bd K does not have a positive curvature at z in direction 1. Then,
Jor every € >0, there is a point x € N, such that

D(H(x), (K, x))<|x - 2] <&,
where H(x) ={u: (u—z, x—z)=0}.

Proof. Let T,(E) denote the tangent at ¢ to the curve E. Consider the half-circle
C tangent to bd K in z, lying in the half-plane H bounded by the line L> N,,
in direction 7, and not disjoint from int K. For u€ C, let {x,} = T,(C)n N, and,
foruebd K nH, let {y,}=T,(bd KnH)n N,.

Case I. bd K has no curvature at z in direction 7. In this case we choose the
radius of C to lie between p;(z) and p;(z). Also, let vebd K n H be such that
v, —z|| < e. Let A be one of the components of K n C lying entirely between v
and z. Let a be the endpoint of A clgser to z. Put {y}=T,(C)~ H(x). Then

la=yl=ly-zll<ly-xl,
whence
Aa, H(x,)) <llxa—zl| = lya = zll = |ly. — 2] <e.
Hence

D(H(y.), (K, y.)) <l|lya—zl <e.
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Case I1. bd K has vanishing curvature at z in direction 7. 1If the radius of C is
large enough, C nbd K consists of z and another point w. Let the radius of C
tend to infinity. Then w converges to z. Choose C such that ||y, — z|| < &. As before,

A(w, H(x,)) <[y — 2|l <k,
whence
D(H(y.), (K, y.) <|yn—z| <e.

The theorem is completely proved. [

Corollary. For most K € #, bd K is smooth [5] and for most and almost all points
zebd K and for any € >0, there are points x € N, such that

D(H(x),3(K, x)) < ||x—z|| <e.

For a proof it suffices to combine Theorem 3 above with Theorem 2 in [7]
and Theorem 2 in [8].

Theorem 4. For most K € #, bd K is smooth [5] and for almost all points z e bd K
and any € >0, there are points x € N, such that |x—z||<1 and

D(H(x),3(K, x))
lx—z|

Proof. Let a> 0. Consider two convex functions f, g: [—a, a]- [0, o) differenti-
able at 0, satisfying f(0) = f(0) =0 and g(x) = g(—x) for all xe (0, a].

In [10], we said that the graph of f has a g-contact at (0, 0) if there is no
neighborhood of 0 on the x-axis where f(x) = g(x). It is easily seen that all results
in [10] remain true if we replace, in the definition of a g-contact, the neighbor-
hoods of 0 by intervals having 0 as an endpoint. We use here this stronger notion
of a g-contact and a result from [10].

We can find a differentiable function g such that if (8(x), 0) is the intersection
of the tangent at (x, g(x)) to the graph of g with the y-axis and y(g, x) denotes
g(x)|B(x)|™", then lim,_, y(g, x) =0.

Let, for example,

(x)—{eklx“ for xe[-3,000(0,3],
gix)= 0 for x=0.

For this convex function g, we have
B(x)=g(x)—xg'(x)=e ™ (1-x7"),

whence, indeed,

.oglx)
ngm—m]—ng(x -1} =0.
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Consider, for kN, the function g, : [—3, 0) U (0, 1] defined by g, (x) = kg(x/k),
with graph G,. It is easily seen that y(g, x) = y(gx, kx).

Assume the graph F of f has a g.-contact at (0,0) for any keN. We shall
prove that, under this assumption, for any € >0, there is some x;< (0, 1) such
that y(f, x3) < &. Indeed, since lim,_, y(g,, x) =0, we can find » € (0, }) such that
v(g,, x) <& whenever x€ (0, v). Because F has a g,-contact at (0, 0), there is
some point x,< v such that f(x,) <g,(x,). Consider the line L through (0, 0)
and (xq, f{x,)). This line meets G, in a point (x,, g,(x;)) with x; <x. Take keN
such that kx, € (x,, 3). This is possible, because x,, x; € (0, ). Thus (kx,, g (kx,))
lies below F. Since F has a g,-contact at (0, 0), there exists x, € (0, kx,) such that
f(x2) < gi(xy). Let

x; = max{x € (x,, kx,): f(x) = g (x)}.

Clearly, y(f, x3) =< y(gi, x3). On the other hand, y(g, x;) = y(g, x5/ k). Since
x; < kx,, we have x5/ k < v, hence y(g, x3/k)<e. It follows that y(f, x;) <g, too.

By Theorem 10 in [10], on most corvex surfaces, at almost every point,
all normal sections have a g,-contact at tha point. With this remark the proof
finishes. []

We end the paper with the following open questions.
Problem 1. Is Conjecture 2 true for a smooth convex body?

Problem 2. 1Is Conjecture 2 true for a typical convex body?
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