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Abstract. In this paper we show that from the point of view of the Baire categories 
for most convex bodies no shadow boundary is included in a hyperplane. A related, 
more quantitative question is also considered. It receives in general a negative answer 
and in the CLcase a positive one, but remains open in the Ct-case. 

1. Introduction 

At the Oberwo l fach  Confe rence  on Convex  Bodies in 1986, F ranz  Her ing  formu-  
la ted  the fo l lowing  conjec tures :  

Let K c R  d be a d - d i m e n s i o n a l  convex body.  Fo r  x ~ K ,  let O(K,x)  be the 
shadow boundary of  K with respect  to x, i.e., 

O(K, x) = {y c K :  aft{x, y} c~ int K = ~Z}, 

aft X deno t ing  the affine hull  o f  X c R a. 

Conjecture 1. There are convex bodies K such that dim aft 0(K, x)  = d for  all x ~ K. 

Conjecture 2. For all convex bodies K and any e > 0 there are an x ~ K and a 

hyperplane H such that 

max{A(y,  H ) :  y ~ a(K,  x)} < cA(x,  H) ,  

where A(z, Z )  means the distance from z c R d to the set Z c R d. 

It is c lear  that  the second  conjec ture  becomes  more  interest ing if  we do  not  
a l low x to go far f rom K. So let us require  that  A(x, K)_< 1. F rom now on we 
a lways  cons ide r  Con jec tu re  2 with this add i t i ona l  condi t ion .  
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We shall establish here the first conjecture and prove the second for a certain 
class of  convex bodies, including those with a boundary of class C 2. In general, 
Conjecture 2 is not true, as I. Bfirfiny recently discovered. 

A topological space in which every open set is of the secorrd (Baire) category 
is called a Baire space. We say that most elements of a Baire space have a certain 
property if all those enjoying it form a residual set, i.e., the complement of a set 
of the first category. Such elements are also called typical. It is well known that 
the space X of all d-dimensional convex bodies of R d equipped with the 
HausdortI metric is a Baire space. (For a survey on properties of typical convex 
bodies see [4] or [9].) For example, it is known that every convex surface has 
almost everywhere a finite curvature in any tangent direction [ 1]. This curvature 
may even vanish almost everywhere in any tangent direction (see de Rham's 
example of a convex curve of this type in [3]). Moreover, according to [7], most 
convex bodies have such boundaries. 

As usual, we think of  the projective space pd as R a plus the hyperplane at 
infinity. Clearly, the definition of a(K, x) can be extended to any x e Pa \K .  

We use the following notations: N ( x )  for the line through x and the point 
of Ke~C closest to x, pFA for the orthogonal projection of the set A on 
the flat F, m k for the k-dimensional Hausdorff measure, and D(A,  B) for 
inf{ [[ a - b 1[: a e A, b e B}, where A, B c a d. 

2. Proof of  the First Conjecture 

We prove Conjecture 1 by using Baire's well-known theorem on categories. 

Theorem 1. For most convex bodies K e ~,  

dim aft a(K, x) = d 

for all x e p d \ K .  

Proof. It is probably known and easily seen that the function s defined on pd X 
by 

s(x, K ) = a ( g , x )  

is upper semicontinuous in both variables, with respect to inclusion and Hausdorff 
metric. This means, for K e Y{ and x e R a, that, for any e > 0, there exists a 8 > 0 
such that, for every K ' e  ~c at Hausdorff distance less than ~ from K and for 
every x ' e  R a with IIx -x ' [ I  < 8, each point y e O(K', x') satisfies A(y, O(K, x))  < e; 
similarly for K e ~ and x E Pd \R  d. 

Let 

~ ,  = { K  e~f: :ix with A(x, K)>_n -~ and dim aff O( K, x) < d}. 

We are going to prove that ~cn is nowhere dense in ~. Consider the open set 
~7 c ~ and choose B e ~7 smooth and strictly convex. By routine arguments we 



On Two Conjectures of Franz Hering About Convex Surfaces 173 

see the fol lowing:  

(i) Putt ing,  for any K ~ Y{', 

v(K)=min{A(x, pNl~)O(K,x): A(x, K)>-n l}, 

the funct ion u: 3'{--> R is con t inuous  and v ( B ) >  n - l .  
(ii) Putt ing,  for any K ~ ~'{, 

/ x ( K ) = m i n { m a  ~ ( K c ~ H ) : H  i s a h y p e r p l a n e ,  K ~ H # Q ,  
x 

HLN(x ) ,  A(x, H )  = u(K), A(x, K )  = n 1}, 

the funct ion /x: 9'[-~ R is con t inuous  and p . ( B ) >  0. 

Put b = [d3 /4 ]  + d and  let V~(b) be the max ima l  (d  - 1 ) -d imens iona l  Hausdorf f  
measure  o f  a ( d - 1 ) - d i m e n s i o n a l  complex  with b vertices,  whose  (one- 
d imens iona l )  edges have length at most  e each.  Since V~(b)-~O for  e-->0, we 
can find a n u m b e r  e 0 > 0  such that  V~o(b)<l~(B)/2. 

N o w  choose  the po ly tope  P c (7 close to B, such that:  

(1) Its vertices are in general  pos i t ion ,  in par t icu lar ,  for any vertices 
Vl,...,Vd+~,aff{V~,...,Vd+~}=~ d and,  for any facets F1,.. . ,Fd+l 

~---~ d + 1 
without  a c o m m o n  ver tex , ,  ,i=~ aft Fi = Q. 

(2) The d iameters  of  its facets are smal le r  than  eo. 
(3) v ( P ) >  n - ' .  

(4) tx(P)> tx(B)/2. 

In o rde r  to prove  that  Y[, is nowhere  dense ,  we now intend to show that  P ~ Y?,. 
Suppose ,  on the cont rary ,  there  is a sequence  o f  points  {xi}~l  and a sequence 
of  convex bodies  {Ki},~_~ converging to P with A(xi, Ki)>-n l, such that  
dim aft O(Ki, xi) = d - 1 for  all i. Then O(Ki, xi) ~ Hi c~ bd  K~ for  some hype rp l ane  
Hi. Since v(P)> n -~, we have,  from some value of  i on, O(Ki, xi)= Hi c~bd Ki. 

We may  assume ( take a subsequence  if  necessary)  that  {xi}~=~ converges  to 
some po in t  Xoe pa  and  {Hi ~ Ki}~=~ converges  to a compac t  convex set G. Then 
{O(Ki, xi)}~=~ converges  to the relat ive b o u n d a r y  F o f  G. By the u p p e r  semicon-  
t inui ty  o f  s, F = O(P, Xo) (see Fig. 1). Clear ly ,  d im aft F = d - 1, F = aft F c~ bd  P, 

a(P, Xo) 

Fig. I 

x0 



174 T. Zamfirescu 

and G is a ( d -  1)-dimensional  polytope.  Of  course,  

A(xo, G) -> A(xo, conv O(P, Xo)) >-- A(Xo, Ho), 

where Ho is the hyperplane  or thogonal  to N(xo), which satisfies Ho ~ P ~ Q and 
A(xo, 14o) = v( P) + A(xo, P ) - n  -1. 

Since 

p,o G ~ P ~ Ho, 

we have 

ma_l(G)>-rna_l(pHoG)>-ma l(P n Ho)>-lx(V)> Iz(B)/2> V~o(b). 

Since every edge of  G lies in some facet o f  P and therefore has length smaller 
than eo, G has more than b = [d3/4]  + d vertices. Thus F has more than d3/4+ d 
vertices, whereas O(P, x) is the union of  F with at most d facets F 1 , . . . ,  Fk of  P 
(not  more,  because o f  the general posit ion o f  the vertices of  P).  Since the 
intersection o f  a ( d - 1 ) - s i m p l e x  with a hyperplane  is a polytope with at most 
d2/4 vertices, F has at m o s t  k d 2 / 4  < - d 3 / 4  vertices in [~J~=l F/, which implies that 
more than d vertices o f  F are vertices o f  P as well. But this contradicts their 
general position. 

It follows that P ~  Y{,. Thus, ~ ,  is nowhere  dense and (_jo~ yr, is o f  the first 
category in K, which proves the theorem. []  

Mani-Levitska [6] proved tha t - - in  the case o f  parallel "light r ays" - - the re  are 
classes o f  convex bodies K which can cover all their shadows (i.e., there is for 
any x c Rd\{0} a rigid mot ion c such that c(px~K)c K),  and classes o f  convex 
bodies which cannot  cover all their shadows. He also observes (private communi-  
cation) that  every convex body  which can cover all its shadows must  have a 
planar  shadow boundary .  This together with Theorem 1 shows that most  convex 
bodies cannot  cover all their shadows. In fact more can be shown: those convex 
bodies which can cover all their shadows form a nowhere  dense set. 

3., On the Second Conjecture 

With Bfirfiny's kind permission,  I reproduce here his example which shows that 
Conjecture  2 is false. In I~ a, let a plane II and a line A be or thogonal  and consider 
a circle C c H, an ellipse E c II  close to C, and a line segment S c A, all with 
midpoint  in 1-I c~ A. Let U be the union o f  all half-lines with the endpoint  at one 
endpoin t  o f  S and meeting conv C, and let V be the union of  all half-lines with 
the endpoin t  at the other  endpoint  o f  S and meeting cony E. The convex body  
K = U n V is a counterexample  to Conjecture  2. 

We see that  in the above construction,  bd K has a vanishing Gauss  curvature 
at every smooth  point,  and any example based on Bfirfiny's idea must  have this 
property.  It is natural to ask whether  or not the conjecture does however  hold 
for  convex surfaces with a finite but not vanishing Gauss  curvature at some point. 
In  this section we give an answer  to this question. 
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In o rde r  to formula te  Theorem 2, let us denote ,  for  K e 5'{, by p~(x)  and p~(x) 
the lower  and  uppe r  radi i  of  curvature  at x e bd  K in the tangent  d i rec t ion  r (for 
def ini t ions see [2]). I f  pT(x)  = p~(x) ,  let pT(x)  denote  the c o m m o n  value;  then 
we say that  bd  K has curvature  ( p ' ( x ) )  i at x in di rect ion r. 

Let Nz be the outer  normal  (with z removed)  at a smooth  poin t  z of  a given 
convex surface.  

Theorem 2. I f  K c~{  and bd K has, f o r  some smooth point z and every tangent 
direction, a nonvanishing finite curvature, then, f o r  x ~ IV., there is a hyperplane Hx 
such that 

max{A(y,  Hx): y e O(K, x)} 

6(x, H,) 
-~0 as X ~ Z. 

Proof  Let 

H~ : { u :  ( u - 2 z + x , x - z ) = O } .  

Also let r be a tangent  d i rec t ion  in z and  

r < p T ( z ) < r + e .  

Let C1 be the half-circle  of  rad ius  r tangent  to bd  K in z, lying in the ha l f -p lane  
H b o u n d e d  by  the line L th rough  x, z, in d i rec t ion  r, and  not  d is jo int  from int K 
(see Fig. 2). The  line T th rough  x, tangent  to C1 in a poin t  t, cuts the circle C2 
of  rad ius  r + e, tangent  to bd  K in z, cop l ana r  with the p reced ing  half-circle  and  

C2 

Cl 
f 

e b' a' z L x 

Fig. 2 
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s u r r o u n d i n g  t, in  two po in t s  a, b. Let a ' ,  b ' ,  t '  be  the or thogof ia l  p ro jec t ions  of  
the  po in t s  a, b, t on  the l ine  L. Clear ly ,  a n y  con tac t  p o i n t  t~ o f  the  l ine  t h rough  
x t a n g e n t  to b d  K c~ H has  a po in t  b e t w e e n  a '  a n d  b '  as p ro j ec t i on  on  L. Let 

0 < rl < m i n  p' (z )  <-- max  pT(z) < 
r r 

a n d ,  for  every  t a n g e n t  d i r ec t ion  ~', take r > r~. The  ind ica t r ix  at z b e i n g  convex  
[2], the a b o v e  use  o f  " m i n "  a n d  " m a x "  is a l l owed  a n d  the  ex t r ema  are ne i the r  
0 no r  oo. 

I f  a is the ang le  b e t w e e n  T a n d  L, t h e n  

a n d  

w h e n c e  

]]a - bl[ = 2x/e 2 cos 2 a + 2 r e ( 1  - s i n  o~) 

l i t ' - x l l  = r c o s  2 a s in - '  a,  

I l a ' -  b'll 2 sin2 a ( 1-si_._.__n_~ e)" 
IIt '-xll  = - r 2 4e2+Sre cos 2 a ] r 2 

O n  the  o the r  h a n d ,  

wh ich  y ie lds  

r 2 = ( r - I I  t ' -  z l l ) ( r  + IIx - zll), 

IIt'-zll 1 1 
IIt '-xl[ 2 + l l x - z l l / r > 2 + l l x - z l l / r ,  " 

N o w ,  i f  x --, z a n d  e --> O, t h e n  

IIt'-zl_.___._~l �89 and I[a'-b'll 
IIt'-xll IIt'-x][ 

m ~ 0  

r - u n i f o r m l y .  O b s e r v i n g  that  

IIt '-ztl  
[Ix-zll  

~ 1 a n d  I Ix-z l l=A(z ,  Hx), 

we get 

w h e n c e  

A(z, H~) 
- - ~ 1  
IIt'-zll 

A(t',/-/x) 
- - " ~ 0  A(x, Hx) 

a n d  

a n d  

A(x, Hx) 
I l t ' -xl l  

Ila'-b'll-,0 
A(x, Hx) 
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again  r -un i fo rmly .  F ina l ly ,  f rom 

A(t., H~) < Ila'-  b'll + A(t', H~) 

it fol lows 

A ( t ,  Hx) 

A(x,  Hx)  

r -un i fo rmly ,  which proves  the theorem.  

-- '0 

177 

[] 

4. Two Related Results  

The ma in  idea  o f  Bfirfiny's coun te r example  is to have at every smooth  po in t  a 
vanish ing  curvature  in one d i rec t ion  and a nonvan i sh ing  curvature  in ano ther  
d i rect ion.  This does not  h a p p e n  in the case of  a typical  convex surface.  But a 
typical  convex surface does  not  satisfy the requi rements  o f  Theorem 2 either. 

Theorems  3 and 4 be low descr ibe  s h a d o w - b o u n d a r y  proper t ies  which are 
weaker  than  tha t  requi red  in Conjec ture  2, but  shared  by most  convex surfaces 
in R d. 

Theorem 3. Let K c ~ possess a smooth point z ~ bd  K and a tangent direction r 

in z, such that bd K does not have a positive curvature at z in direction r. Then, 

for  every e > O, there is a point x ~ Nz such that 

D ( H ( x ) ,  O(K, x ) )  < I I x -  zll < e, 

where H ( x )  = {u: (u - z, x - z) = 0}. 

Proof. Let Tr deno te  the tangent  at s c to the curve E. C o n s i d e r  the half-c i rc le  
C tangent  to b d  K in z, lying in the ha l f -p lane  H b o u n d e d  by  the line L ~ Nz, 
in d i rec t ion  r, and  not  d is jo in t  f rom int K. For  u ~ C, let {x.} = T u ( C ) ~  N~ and,  
for  u ~ b d  K ~ / 4 ,  let { y , } =  Tu(bd K c ~ H ) n  Nz. 

Case I. bd  K has no curvature at z in direction r. In this case we choose  the  
radius  o f  C to lie be tween  p'~(z) and  p~(z). Also,  let v ~ b d  K n H be such that  
Ily~ - z H < e. Let A be one o f  the componen t s  of  K n C lying ent i rely be tween  v 
and  z. Let a be the e n d p o i n t  of  A c l ~ e r  to z. Put {y} = Ta(C) n H ( x ) .  Then 

whence  

Hence  

]la - y l l  = [ ly -z l l  < I ly-  xall, 

A(a, H(xa) )  < IlXa -- zll ~ IlYa -- zll ~ b[Yt,-- zll < ~. 

D ( H ( y . ) ,  O(K, y~)) < Ily. - z H  < e. 
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Case II. bd K has vanishing curvature at  z in direction r. I f  the radius o f  C is 
large enough,  C n bd K consists of  z and another  point  w. Let the radius of  C 
tend to infinity. Then w converges to z. Choose  C such that ltYw - zll < ~. As before, 

whence 

A(w, H(xw) )  < [lyw - zl] < e, 

D ( H ( y ~ ) ,  O(K, y~))  < [lYw - zll < e. 

The theorem is completely proved. [] 

Corollary. For most K e fir, bd K is smooth [5] and fo r  most and almost all points 
z ~ bd K and fo r  any e > O, there are points x ~ N~ such that 

D(H(x), 0(K,  x ) )  < IIx - zll < 

For a p roo f  it suffices to combine  Theorem 3 above with Theorem 2 in [7] 
and Theorem 2 in [8]. 

Theorem 4. For most K ~ fir, bd K is smooth [5] and fo r  almost all points z ~ bd K 
and any e > O, there are points x c Nz such that I Ix -z l l  <- 1 and 

D ( H ( x ) ,  O(K, x ) )  

IIx- ll 

Proof. Let a > 0. Cons ider  two convex functions f, g: [ - a ,  a ]  ~ [0, oo) ditterenti- 
able at 0, satisfying f (0 )  = f ( 0 )  = 0 and g ( x )  = g ( - x )  for all x E (0, a].  

In [10], we said that the graph o f f  has a g-contact  at (0,0) if there is no 
ne ighborhood  of  0 on the x-axis where f ( x )  -> g ( x ) .  It is easily seen that all results 
in [10] remain true if we replace, in the definition of  a Z-contact,  the neighbor- 
hoods  o f  0 by intervals having 0 as an endpoint .  We use here this stronger not ion 
o f  a g-contact  and a result f rom [10]. 

We can find a differentiable function g such that if ([3 (x), 0) is the intersection 
o f  the tangent  at (x, g ( x ) )  to the graph o f  g with the y-axis and y(g,  x) denotes 
g(x) l[3(x)l-', then limx.o y(g,  x) =0 .  

Let, for example, 

{~ -IXI 1 for XE [--�89 0) u (0, 111 
g ( x ) =  for  x = 0 .  

For  this convex function g, we have 

[3 (x )  = g ( x )  - xg ' ( x )  = e-X-'(1 - x - ' ) ,  

whence,  indeed, 

. g ( x )  
lm - -  = lim(x -1 - 1) -1 = O. 

x 0113(x)l x - o  
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Consider ,  for k oN, the funct ion  gk : [--�89 0 )U (0, �89 defined by gk(X)= k g ( x / k ) ,  
with graph Gk. It is easily seen that y(g, x) = Y(gk, kx). 

Assume the graph F of f has a gk-contact at (0, 0) for any k c N. We shall 
prove that, under  this assumpt ion,  for any e > 0, there is some x3 ~ (0, �89 such 
that y(f ,  x3) < e. Indeed,  since limx~o 7(g~, x) = 0, we can find u e (0, 41) such that 
3'(g~, x ) <  e whenever  x c (0, u). Because F has a g~-contact at (0, 0), there is 
some point  Xo< u such that f ( xo )<g~(xo ) .  Consider  the l ine L through (0, 0) 
and  ( xo , f ( xo ) ) .  This line meets G~ in a point  (x~, g~(x~)) with xl < x. Take k e N 
such that kxl e (xo, ~). This is possible, because Xo, xl E (0, 1). Thus (kx l ,  gk(kXl)) 
lies below F. Since F has a gk-contact at (0, 0), there exists x2e (0, kx~) such that 

f (x2)  < gk(X2). Let 

x3 = max{x c (x: ,  kxl): f ( x )  = gk(x)}. 

Clearly, y ( f  x 3 ) -  < 7(gk, X3). On the other hand,  7(gk, X3) = y(g, x3/k).  Since 
x3< kx~, we have x3/k<, u, hence y(g, x3/k) '< e. It follows that 7(f,  x3)<  e, too. 

By Theorem 10 in [10], on most co~,~ex surfaces, at almost every point ,  
all normal  sections have a gk-contact at tha~ point.  With this remark the proof  

finishes. [] 

We end the paper  with the following open questions.  

Problem 1. Is Conjec ture  2 true for a smooth convex body?  

Problem 2. Is Conjec ture  2 true for a typical convex body?  
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