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A Characterization of 3-dimensional Convex Sets
with an Infinite X-ray Number

K. BEZDEK! and T. ZAMFIRESCU

1. Introduction and result

The X-raying and illumination of convex sets were intensively studied during
the last decade. Our references at the end of the paper constitute just a very
incomplete selection. The problem considered here belongs to this area.

Let K% be the space of all closed convex sets with non-empty interior in
the d-dimensional Euclidean space E¢, where d > 2. Let L C E? be a line
through the origin. We say that the point p of K € K% is X-rayed along L
if the line parallel to L passing through p intersects the interior of K. The
X-ray number of K is the smallest number of lines such that every point of
K is X-rayed along at least one of these lines (see also P. S. Soltan and V.
P. Soltan’s paper [7]).

Let int M, bd M, rbd M, vert M, conv M, M denote the interior,
boundary, relative boundary, vertex set, convex hull, closure of M, respec-
tively.

It is easy to see that in E? every closed convex set with a non-empty

interior possesses an X-ray number not larger than 2. However, in E? with
d > 3, there are sets with infinite X-ray numbers. An example can be
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obtained in the following way. Take a d-dimensional closed convex cone
C C E? with balls as (d — 1)-dimensional sections orthogonal to the axis.
Then let H be a hyperplane that meets int C' and is parallel to a ray in
bd C. Denoting by H* the closed halfspace bounded by H which contains
the apex of C, it is not hard to see that the X-ray number of C N HT is
infinite: In order to X-ray the points of H N'bd C we need infinitely many
directions. Thus, it is natural to raise the following problem.

Problem 1. Find a characterization of those members of K¢ which have a
finite X-ray number (d > 3).

We will solve here this problem in the case d = 3.

If Hy, Hy are hyperplanes, A, A, affine subspaces of E¢, and K an
element of K¢ verifying (Hy U Hy) Nint K = (), then Z(Hy, K, H2) means
the measure of the dihedral angle between H; and H> containing int K, and
Z(A;1, A2) means the smallest measure of an angle between a line in A; and
a line in A,.

We say that K € K¢ is asymptotically singular if there are a line L and
two sequences of not necessarily distinct supporting hyperplanes {H,},
and {H/}> | such that

n=1

(i) H, is parallel to L for each n,

(ii) H, N H), N K # () for each n,

(i11) £(Hy, K, H),) — 0,

() £(L,H, N H) — 0.

There are essentially two different cases: If the hyperplanes H, are
all identical we say that K has the singular face H, N K. If the hyper-
planes H,, are all distinct we say that K has the singular sequence of faces
(i Ho K} .

Our main result is the following.

Theorem. The X-ray number of K € K3 is infinite if and only if K is
asymptotically singular.

Obviously, if K € K¢ is compact, i.e. a convex body, then the X-ray
number of K is at least d. This bound is sharp because it is attained by
any smooth convex body. Moreover, as the X-ray number of K is at most
as large as its illumination number, (d + l)d is an upper bound, not sharp
though (see [5]). The following set has a quite large X-ray number: Let
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Q@ C E? be a d-dimensional cube and F a (d — 2)-dimensional face of Q.
Then the X-ray number of conv(vert Q — vert F) is 3 - 2472,

Problem 2. Is the X-ray number of any convex body in E? at most 3-24727

2. Proofs

Let F be a face of K € K% where d > 3. The spherical image v(F)
of the face F' is the set of all points z in the (d — 1)-dimensional unit
sphere S%~1 C E? centered at the origin 0 of E¢ such that the supporting
hyperplane of K with outer normal z contains F. It is easy to see that
v(F') is compact and spherically convex. Moreover, the spherical images of
distinct faces of K have disjoint relative interiors.

The following simple lemma, the proof of which we leave to the reader,
will be tacitly used throughout the rest of the paper.

Lemma 1. Letd > 3, K € ICd, p € bd K and F be a face of K of smallest
dimension which contains p. Then p is X-rayed along the line L > 0 if and
only if L+ Nv(F) = (. Therefore, the X-ray number of K is the smallest
number of (d — 2)-dimensional great spheres in S%! such that the spherical
image of every face of K is disjoint from at least one of those great spheres.

From now on let K € K3 be unbounded. Then v(K) lies in a closed
hemisphere S_ZF C 52, with a great circle S as boundary. Put

T, =81 nup (R )

Lemma 2. If for the point p € T there is no sequence of faces {Fy,} >
such that
v(F,) NS #0

for each n and the distance from both p and —p to v(F,) tends to zero,
then there is a neighbourhood Dy, of p and four great circles in S* such that
for every face F of K, for which v(F) meets D, N S, one of the circles is
disjoint from v(F).

Proof. For any open disk D, around p in S?, let Ap = D, N S Under
the hypotheses of the lemma, there is an open disk D, around p such that
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no v(F) meets both A, and —D,,. Let 1,22 € S1 be the endpoints of the
arc A—p. Choose the great circle S; passing through z;, —z; (i = 1,2) such
that S;NS2NS% C —D,. At most one 2-dimensional spherical image v(Fy)
simultaneously meets A, S1 and S3. No 1-dimensional spherical image v(F)
simultaneously meets A,, S1 and S except for the case that v(F) C S 1 and
we may have at most one such spherical image v(F3). Thus, the circles 51,
S,, a great circle disjoint from v(F;) and another one disjoint from v(F3)
satisfy the requirements of the lemma.

. Proof of the Theorem. We prove only the non-straightforward implica-
tion. Assume that the X-ray number of K € K3 is infinite and prove that
K is asymptotically singular. There are two possible cases.

Case I: For each p € T, there is no sequence {v(Fy)}y—; such that
v(F,) N S* # O for each n and the distance from both p and —p to v(Fy)
tends to zero.

In this case, by Lemma 2, for each p € T there are 4 great circles and
an open disk D, around p such that every v(F) meeting Dp N S is disjoint
from at least one of the circles. Clearly {Dp} p covers T and we select a
finite subcovering {Dp}, . Thus 4ng great circles and S take care of the
spherical images of all faces of K, but this contradicts the assumption.

Case II: For some p € T, there is a sequence {v(Fp)},—, such that
v(F,) N S* # 0 for each n and the distance from both p and —p to v(Ey,)
tends to zero.

This can happen for at most one pair of points (p, —p). Indeed, if this
happened for another pair of points (¢, —¢) too then, necessarily, for some
large m and n, the relative interior of v(Fy) (to which p and —p are close)
would meet the relative interior of v(F.) (to which ¢ and —q are close), a
contradiction.

Suppose that p € v(F,) for infinitely many n. Then a subsequence
of {v(F,)}>2, converges to a halfcircle S* with endpoints p, —p. This
implies that K has the singular face with outernormal unit vector p (for
L orthogonal to the plane of S*). The same happens if —p € v(F,) for
infinitely many n. So we may suppose p,—p & v(Fy) for all n (otherwise
take a subsequence). Let

pn € V(ER) N St

and suppose without loss of generality that p, — p. Then there are points
gn € v(Fy) such that g, — —p.
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We need the following statement. If a sequence of spherical images
converges to a halfcircle, then the spherical image of the whole set is included
in a closed hemisphere having that halfcircle on its boundary. In order to
see this take an arbitrary interior point, say O, of the given set K € K3 and
let C C E3 be the union of (closed) halflines emanating, from O and lying
in K. Obviously, C is a closed convex cone with apex O. Let L C E3 be the
line passing through O and being orthogonal to the plane of the halfcircle
that is the limit of the sequence {v(F},)},-, of the spherical images of the
faces F/ of K. Obviously, K has to be unbounded ie. K as well as C
contain at least one halfline and so the spherical image of K is included in a
closed hemisphere. Moreover, the dimension of C is at most 2, otherwise the
spherical image of K would have a spherical diameter < 7, a contradiction.
Let pl, € F! for n = 1,2,... As the sequence {p, },~, cannot be bounded
in E? there exists a subsequence, say {p), },-; itself, such that the (closed)
halflines emanating from O and passing through the points p/, tend to a
halfline say, £ emanating from O and lying in C. Finally, let the supporting
hyperplanes H,,, H,, of K be chosen such that they pass through the point
pl, with Z(H,, K, H]) — 0. As C has to be contained in the dihedral angle
between H,, and H}, containing int K, we get that £ is an extreme halfline of
C. Finally, observe that £ C L. This completes the proof of the statement.

Now, some subsequence of {v(Fy)},-; converges to a halfcircle §’. If

S' ¢ S! then the subsequence is a singular sequence of faces (for properly
choosen H,, and H}, with F,, = H,NH, NK and for L orthogonal to the plane
of S1). If S’ ¢ S* then there is a closed hemisphere ST with rbd ST = &
containing, in fact all spherical images of faces of K. Also, in the present
case p, —p & v(K). Therefore a great circle C with

cns . nst ={p-n

misses all spherical images of faces of K. But this again contradicts the
infinity of the X-ray number of K.

The proof is finished.
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