COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 63. INTUITIVE GEOMETRY, SZEGED (HUNGARY), 1991

A Characterization of 3-dimensional Convex Sets with an Infinite X-ray Number

K. BEZDEK¹ and T. ZAMFIRESCU

1. Introduction and result

The X-raying and illumination of convex sets were intensively studied during the last decade. Our references at the end of the paper constitute just a very incomplete selection. The problem considered here belongs to this area.

Let K^d be the space of all closed convex sets with non-empty interior in the d-dimensional Euclidean space \mathbf{E}^d , where $d \geq 2$. Let $L \subset \mathbf{E}^d$ be a line through the origin. We say that the point p of $K \in K^d$ is X-rayed along L if the line parallel to L passing through p intersects the interior of K. The X-ray number of K is the smallest number of lines such that every point of K is X-rayed along at least one of these lines (see also P. S. Soltan and V. P. Soltan's paper [7]).

Let int M, bd M, rbd M, vert M, conv M, \overline{M} denote the interior, boundary, relative boundary, vertex set, convex hull, closure of M, respectively.

It is easy to see that in \mathbf{E}^2 every closed convex set with a non-empty interior possesses an X-ray number not larger than 2. However, in \mathbf{E}^d with $d \geq 3$, there are sets with infinite X-ray numbers. An example can be

¹ The work was supported by Hung. Nat. Found. for Sci. Research No. 326-0413.

obtained in the following way. Take a d-dimensional closed convex cone $C \subset \mathbf{E}^d$ with balls as (d-1)-dimensional sections orthogonal to the axis. Then let H be a hyperplane that meets int C and is parallel to a ray in $\mathrm{bd}\,C$. Denoting by H^+ the closed halfspace bounded by H which contains the apex of C, it is not hard to see that the X-ray number of $C \cap H^+$ is infinite: In order to X-ray the points of $H \cap \mathrm{bd}\,C$ we need infinitely many directions. Thus, it is natural to raise the following problem.

Problem 1. Find a characterization of those members of K^d which have a finite X-ray number $(d \ge 3)$.

We will solve here this problem in the case d = 3.

If H_1, H_2 are hyperplanes, A_1, A_2 affine subspaces of \mathbf{E}^d , and K an element of K^d verifying $(H_1 \cup H_2) \cap \operatorname{int} K = \emptyset$, then $\angle (H_1, K, H_2)$ means the measure of the dihedral angle between H_1 and H_2 containing int K, and $\angle (A_1, A_2)$ means the smallest measure of an angle between a line in A_1 and a line in A_2 .

We say that $K \in \mathcal{K}^d$ is asymptotically singular if there are a line L and two sequences of not necessarily distinct supporting hyperplanes $\{H_n\}_{n=1}^{\infty}$ and $\{H'_n\}_{n=1}^{\infty}$ such that

- (i) H_n is parallel to L for each n,
- (ii) $H_n \cap H'_n \cap K \neq \emptyset$ for each n,
- $(iii) \angle (H_n, K, H'_n) \rightarrow 0,$
- $(iv) \angle (L, H_n \cap H'_n) \rightarrow 0.$

There are essentially two different cases: If the hyperplanes H_n are all identical we say that K has the singular face $H_n \cap K$. If the hyperplanes H_n are all distinct we say that K has the singular sequence of faces $\{H_n \cap H'_n \cap K\}_{n=1}^{\infty}$.

Our main result is the following.

Theorem. The X-ray number of $K \in \mathcal{K}^3$ is infinite if and only if K is asymptotically singular.

Obviously, if $K \in \mathcal{K}^d$ is compact, i.e. a convex body, then the X-ray number of K is at least d. This bound is sharp because it is attained by any smooth convex body. Moreover, as the X-ray number of K is at most as large as its illumination number, $(d+1)^d$ is an upper bound, not sharp though (see [5]). The following set has a quite large X-ray number: Let

 $Q \subset \mathbf{E}^d$ be a d-dimensional cube and F a (d-2)-dimensional face of Q. Then the X-ray number of conv(vert Q – vert F) is $3 \cdot 2^{d-2}$.

Problem 2. Is the X-ray number of any convex body in \mathbf{E}^d at most $3 \cdot 2^{d-2}$?

2. Proofs

Let F be a face of $K \in \mathcal{K}^d$, where $d \geq 3$. The spherical image $\nu(F)$ of the face F is the set of all points x in the (d-1)-dimensional unit sphere $S^{d-1} \subset \mathbf{E}^d$ centered at the origin $\mathbf{0}$ of \mathbf{E}^d such that the supporting hyperplane of K with outer normal x contains F. It is easy to see that $\nu(F)$ is compact and spherically convex. Moreover, the spherical images of distinct faces of K have disjoint relative interiors.

The following simple lemma, the proof of which we leave to the reader, will be tacitly used throughout the rest of the paper.

Lemma 1. Let $d \geq 3$, $K \in \mathcal{K}^d$, $p \in \operatorname{bd} K$ and F be a face of K of smallest dimension which contains p. Then p is X-rayed along the line $L \ni \mathbf{0}$ if and only if $L^{\perp} \cap \nu(F) = \emptyset$. Therefore, the X-ray number of K is the smallest number of (d-2)-dimensional great spheres in S^{d-1} such that the spherical image of every face of K is disjoint from at least one of those great spheres.

From now on let $K \in \mathcal{K}^3$ be unbounded. Then $\nu(K)$ lies in a closed hemisphere $S^2_+ \subset S^2$, with a great circle S^1 as boundary. Put

$$T = \overline{S^1 \cap \nu(K)}.$$

Lemma 2. If for the point $p \in T$ there is no sequence of faces $\{F_n\}_{n=1}^{\infty}$ such that

$$\nu(F_n) \cap S^1 \neq \emptyset$$

for each n and the distance from both p and -p to $\nu(F_n)$ tends to zero, then there is a neighbourhood D_p of p and four great circles in S^2 such that for every face F of K, for which $\nu(F)$ meets $D_p \cap S^1$, one of the circles is disjoint from $\nu(F)$.

Proof. For any open disk D_p around p in S^2 , let $A_p = D_p \cap S^1$. Under the hypotheses of the lemma, there is an open disk D_p around p such that

no $\nu(F)$ meets both A_p and $-D_p$. Let $x_1, x_2 \in S^1$ be the endpoints of the arc $\overline{A_p}$. Choose the great circle S_i passing through $x_i, -x_i$ (i = 1, 2) such that $S_1 \cap S_2 \cap S_+^2 \subset -D_p$. At most one 2-dimensional spherical image $\nu(F_1)$ simultaneously meets A_p , S_1 and S_2 . No 1-dimensional spherical image $\nu(F)$ simultaneously meets A_p , S_1 and S_2 except for the case that $\nu(F) \subset S^1$, and we may have at most one such spherical image $\nu(F_2)$. Thus, the circles S_1 , S_2 , a great circle disjoint from $\nu(F_1)$ and another one disjoint from $\nu(F_2)$ satisfy the requirements of the lemma.

Proof of the Theorem. We prove only the non-straightforward implication. Assume that the X-ray number of $K \in \mathcal{K}^3$ is infinite and prove that K is asymptotically singular. There are two possible cases.

Case I: For each $p \in T$, there is no sequence $\{\nu(F_n)\}_{n=1}^{\infty}$ such that $\nu(F_n) \cap S^1 \neq \emptyset$ for each n and the distance from both p and -p to $\nu(F_n)$ tends to zero.

In this case, by Lemma 2, for each $p \in T$ there are 4 great circles and an open disk D_p around p such that every $\nu(F)$ meeting $D_p \cap S^1$ is disjoint from at least one of the circles. Clearly $\{D_p\}_{p \in T}$ covers T and we select a finite subcovering $\{D_p\}_{n \leq n_0}$. Thus $4n_0$ great circles and S^1 take care of the spherical images of all faces of K, but this contradicts the assumption.

Case II: For some $p \in T$, there is a sequence $\{\nu(F_n)\}_{n=1}^{\infty}$ such that $\nu(F_n) \cap S^1 \neq \emptyset$ for each n and the distance from both p and -p to $\nu(F_n)$ tends to zero.

This can happen for at most one pair of points (p, -p). Indeed, if this happened for another pair of points (q, -q) too then, necessarily, for some large m and n, the relative interior of $\nu(F_m)$ (to which p and -p are close) would meet the relative interior of $\nu(F'_n)$ (to which q and -q are close), a contradiction.

Suppose that $p \in \nu(F_n)$ for infinitely many n. Then a subsequence of $\{\nu(F_n)\}_{n=1}^{\infty}$ converges to a halfcircle S^* with endpoints p, -p. This implies that K has the singular face with outernormal unit vector p (for L orthogonal to the plane of S^*). The same happens if $-p \in \nu(F_n)$ for infinitely many n. So we may suppose $p, -p \notin \nu(F_n)$ for all n (otherwise take a subsequence). Let

$$p_n \in \nu(F_n) \cap S^1$$

and suppose without loss of generality that $p_n \to p$. Then there are points $q_n \in \nu(F_n)$ such that $q_n \to -p$.

We need the following statement. If a sequence of spherical images converges to a halfcircle, then the spherical image of the whole set is included in a closed hemisphere having that halfcircle on its boundary. In order to see this take an arbitrary interior point, say O, of the given set $K \in \mathcal{K}^3$ and let $C \subset \mathbf{E}^3$ be the union of (closed) halflines emanating, from O and lying in K. Obviously, C is a closed convex cone with apex O. Let $L \subset \mathbb{E}^3$ be the line passing through O and being orthogonal to the plane of the halfcircle that is the limit of the sequence $\{\nu(F'_n)\}_{n=1}^{\infty}$ of the spherical images of the faces F'_n of K. Obviously, K has to be unbounded i.e. K as well as C contain at least one halfline and so the spherical image of K is included in a closed hemisphere. Moreover, the dimension of C is at most 2, otherwise the spherical image of K would have a spherical diameter $< \pi$, a contradiction. Let $p'_n \in F'_n$ for n = 1, 2, ... As the sequence $\{p'_n\}_{n=1}^{\infty}$ cannot be bounded in \mathbf{E}^3 there exists a subsequence, say $\{p'_n\}_{n=1}^{\infty}$ itself, such that the (closed) halflines emanating from O and passing through the points p'_n tend to a halfline say, ℓ emanating from O and lying in C. Finally, let the supporting hyperplanes H_n, H'_n of K be chosen such that they pass through the point p'_n with $\angle(H_n, K, H'_n) \to 0$. As C has to be contained in the dihedral angle between H_n and H'_n containing int K, we get that ℓ is an extreme halfline of C. Finally, observe that $\ell \subset L$. This completes the proof of the statement.

Now, some subsequence of $\{\nu(F_n)\}_{n=1}^{\infty}$ converges to a halfcircle S'. If $S' \subset S^1$ then the subsequence is a singular sequence of faces (for properly choosen H_n and H'_n with $F_n = H_n \cap H'_n \cap K$ and for L orthogonal to the plane of S^1). If $S' \not\subset S^1$ then there is a closed hemisphere S^+ with rbd $S^+ = S'$ containing, in fact all spherical images of faces of K. Also, in the present case $p, -p \not\in \nu(K)$. Therefore a great circle C with

$$C \cap S^2_+ \cap S^+ = \{p, -p\}$$

misses all spherical images of faces of K. But this again contradicts the infinity of the X-ray number of K.

The proof is finished.

References

[1] K. Bezdek, The problem of illumination of the boundary of a convex body by affine subspaces, *Mathematika* **38** (1991), 362–375.

- [2] K. Bezdek, Hadwiger-Levi's covering problem revisited, in: New Trends in Discrete and Computational Geometry (Editor: J. Pach), Springer Verlag (1993), 199–233.
- [3] V. G. Boltyanskii and I. Z. Gohberg, Results and problems in combinatorial geometry, Cambridge University Press, Cambridge (1985).
- [4] R. J. GARDNER and P. McMullen, On Hammer's X-ray problem, J. London Math. Soc. 21 (1980), 171–175.
- [5] M. LASSAK, Covering the boundary of a convex set by tiles, Proc. Amer. Math. Soc. 104 (1988), 269–272.
- [6] J. O'ROURKE, Art Gallery Theorems and Algorithms, Oxford University Press, New York – Oxford (1987).
- [7] P. S. Soltan and V. P. Soltan, On the X-raying of convex bodies, *Soviet Math. Dokl.* 33 (1986), 42–44.
- [8] A. Volčič, A three point solution to Hammer's X-ray problem, J. London Math. Soc. 34 (1986), 340–359.
- [9] A. VOLČIČ and T. ZAMFIRESCU, Ghosts are scarce, J. London Math. Soc. 40 (1989), 171–178.

Károly Bezdek

Department of Geometry, Eötvös Loránd University, 1088 Budapest, Rákóczi út 5, Hungary.

Tudor Zamfirescu

Department of Mathematics, University of Dortmund, Postfach 500500 D-4600 Dortmund Germany.