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Abstract. In this paper we consider the two events that a random congruent copy of a convex
body meets each one of two given families of equidistant lines in the plane. The probabilities are
easily calculated. Then it is discovered that there always exists a value for the angle � between the
nonparallel lines, such that the two events be independent. For convex bodies of constant width, and
only for them, the two events are independent for any �.
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1. Introduction

The idea of repeating Buffon’s experiment using other objects instead of a needle
is not new. Various special planar convex bodies have been investigated in the
literature; we shall consider here the general case. Of course, to go beyond convexity
makes no sense, because only the convex cover is relevant to our problem (if the
object is supposed connected).

Among the particular cases already treated in the literature we mention those
of a circular disc [6], a sector thereof [4], a segment thereof [3], a (not necessarily
symmetric) lens [3], and an ellipse [2].

Also, we follow the idea of considering not only one family of parallel lines
but two, and of studying the hitting probability for the resulting lattice and the
independency case of the two hitting events.

Consider a convex body (which means here a compact convex set) K � R. Let
Ra be a set of equidistant parallel lines in R (at distance a) and Rb another such
set of lines (at distance b), the two directions making an angle � 2 (0; �): The
objects of our investigation are the events Ia; Ib that the random convex body K

– more precisely the random congruent copy of K – meets some line in Ra, Rb

respectively.
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Let L(�) be the width of K in direction �. We consider the following natural
condition.

max
06�<�

L(�) < minfa; bg: (�)

All cells of the lattice Ra [ Rb are congruent to a parallelogram �.
LetK be the set of all convex bodies congruent with K and with their centroids

(just to make a choice) inside �. We consider our convex bodies as uniformly dis-
tributed, in the sense that the centroid as a random variable is uniformly distributed
in � and the random variable � (the rotation angle) is uniformly distributed in the
interval [0; 2�].

2. The Hitting Probability

Our goal here is the calculation of the probability p = P (Ia [ Ib):
LetB be the length of the boundary of K (counted twice if K is a line segment).

THEOREM 1. If condition (�) is satisfied then

p =
1
�ab

�
B(a+ b)�

Z
�

0
L(�)L(�+ �) d�

�
:

Proof. If L is the set of those convex bodies congruent with K which are
included in �, then

p = 1�
�(L)

�(K)
;

where � is the usual elementary kinematic measure in R
2 .

Let �� be the set of the centroids of all translates of K rotated with the angle
�, included in �.

Clearly,

�(K) =

Z 2�

0
d�
Z
(x;y)2�

dx dy =
2�ab
sin�:

Since the sides of �� have lengths

a� L(�)

sin�
;

b� L(�+ �)

sin�
;
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we have

�(L) =

Z 2�

0
d�
Z
(x;y)2��

dx dy =
Z 2�

0

(a� L(�))(b� L(�+ �))

sin�
d�

=
2�ab
sin�

�
a

sin�

Z 2�

0
L(�+ �) d��

�
b

sin�

Z 2�

0
L(�) d�+

1
sin�

Z 2�

0
L(�)L(�+ �) d�:

Hence

p =
1

2�ab

 
a

Z 2�

0
L(�+ �) d�+ b

Z 2�

0
L(�) d� �

�

Z 2�

0
L(�)L(�+ �) d�

!
:

Since L(�) = L(�+ �) and
Z 2�

0
L(�) d� =

Z 2�

0
L(�+ �) d� = 2B;

we get

p =
1
�ab

�
B(a+ b)�

Z
�

0
L(�)L(�+ �) d�

�

and the theorem is proved.

Remarks. By letting b!1 in Theorem 1, we find

P (Ia) =
B

�a
;

the probability that the convex body K with L(�) < a for every � meetsRa, result
discovered by Barbier [1] not quite recently, namely in 1860.

For a convex body K of constant width k smaller than both a and b,

p =
1
�ab

(B(a+ b)� �k2) =
k

ab
(a+ b+ k):

This extends the formula known for a circular disc of diameter k ([7, p. 42]).
In the case of Buffon’s experiment, as K is a line segment of length l with

L(�) = lj sin�j, Theorem 1 gives

p =
1
�ab

[2l(a+ b)� (sin�+ (1
2� � �) cos�)l2];
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which verifies a result from ([6, p. 55]).
For K an ellipse of half-axes �, � , the width is L(�) = 2

p
�2 sin2 �+ �2 cos2 �

and, by Theorem 1,

p =
1
�ab

�
B(a+ b)�

�4
Z

�

0

q
(�2 sin2 �+�2 cos2 �)(�2 sin2(�+�)+�2+cos2(�+�)) d�

�
;

which extends a formula known for the case � = �=2 (see [2, p. 971]).

3. Auxiliary Material

In the last section we intend to treat the case of independency of the events Ia and
Ib. This section will provide the necessary technical basis.

Let f :R ! R be a periodic function, of period 2�=m, with m 2 N, such that
f j[0;2�] 2 L2([0; 2�]).

PROPOSITION. Consider the equality

1
2�

Z 2�

0
f(�)f(�+ �) d� =

 
1

2�

Z 2�

0
f(�) d�

!2

: (��)

(a) As an equation in �, (��) has at least one solution in [0; �=m].
(b) The equation (��) has the solution � = 0 if and only if f is constant.

Proof. Let �1
�1

an ein� be the Fourier series of f . Then the Fourier series of the
function f(�+ �) with the variable � is �1

�1
an ein� ein�, and

f j[0;2�] 2 L2([0; 2�]) if and only if
1X
�1

janj
2 <1; (1)

1
2�

Z 2�

0
f(�)f(�+ �) d� =

1
2�

Z 2�

0
f(�)f(�+ �) d�

=
1X
�1

janj
2 ein�: (2)

Moreover, we have

Z 2�

0
f(�)f

�
�+

2�
m
� �

�
d� =

Z 2�

0
f(�)f(�+ �) d�: (3)
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Indeed, the periodicity of f yieldsZ 2�

0
f(�)f

�
�+

2�
m
� �

�
d�

=

Z 2�

0
f(�)f(�� �) d� =

Z 2���

��

f(t+ �)f(t) dt

=

Z 0

��

f(t+ �)f(t) dt+
Z 2���

0
f(t+ �)f(t) dt:

As a function of t, f(t+ �)f(t) has period 2�, whence

Z 0

��

f(t+ �)f(t) dt =
Z 2�

2���
f(t+ �)f(t) dt

and (3) follows.
Thus, (��) becomes

1X
�1

janj
2ein� = ja0j

2: (��0)

Now (b) follows immediately, because for� = 0 (��0) is equivalent to janj2 = 0
for all n 6= 0, i.e. f = a0.

From (1) and (2) it follows that the function

u(ei�) =
1

2�

Z 2�

0
f(�)f(�+ �) d� =

1X
�1

janj
2 ein�

is continuous, and its Fourier series, whose coefficients are janj2, converges uni-
formly to u. From (3) it follows that

u(ei�) = u(ei((2�=m)��)) (4)

and from the periodicity of f it follows that

u(ei(�+(2�=m))) = u(ei�): (5)

To show (a), let ~u be the harmonic function inD = fz 2 C : jzj < 1g, continuous
inD, with ~u(ei�) = u(ei�) (the solution of Dirichlet’s problem with boundary data
u). Then

~u(0) =
1

2�

Z 2�

0
~u(ei�) d� =

1
2�

Z 2�

0
u(ei�) d� = ja0j

2:
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Since ~u is continuous in D, it attains its absolute maximum and minimum on
the boundary, whence there are points �1; �2 2 [0; 2�] with

~u(ei�1) � ~u(0) � ~u(ei�2);

in other words

u(ei�1) � ja0j
2 � u(ei�2):

From the continuity of u it follows that u(ei�0) = ja0j
2 for some �0 2 [0; 2�]:

Then

u(ei�0) =
1X
�1

janj
2ein�0 = ja0j

2;

whence �0 is a solution of (��0).
From (5) it follows that (��0) has a solution in [0; 2�=m], and from (4) we see

that there is a solution even in [0; �=m].

Remark. As the above argument shows, the left-hand side of (��) is a continuous
function of�. Then, by (b), it follows that 0 cannot even be a limit point of solutions
of (��) unless f is constant. Hence (��) holds for arbitrarily small values of � if
and only if f is constant.

4. The Independency Case

When are the events Ia and Ib independent? The characterization of this case is the
aim of the next theorem.

THEOREM 2. Suppose condition (�) is satisfied. Then the events Ia and Ib are
independent if and only if

Z
�

0
L(�)L(�+ �) d� =

B2

�
:

Proof. The probability of Ia; Ib happening simultaneously is

P (Ia \ Ib) = P (Ia) + P (Ib)� P (Ia [ Ib);

where P (Ia) = B=(�a), P (Ib) = B=(�b) and p was computed in Theorem 1.
Thus,

P (Ia \ Ib) =
1
�ab

Z
�

0
L(�)L(� + �) d�:
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The events Ia and Ib are independent precisely when P (Ia \ Ib) = P (Ia)P (Ib),
which yields the condition from the statement.

Remarks. The condition in Theorem 2 is verified for all angles � if K has
constant width. Hence, for such a K and any �, Ia and Ib are independent. For the
case of a circular disc this was known (see [7, p. 43]). Is the condition in Theorem
2 verified for all � only if K has constant width? The answer is provided by the
next result.

THEOREM 3. If K has constant width then the events Ia and Ib are independent
for any angle �. If Ia and Ib are independent for arbitrarily small angles � then
K has constant width.

Proof. The width L of a convex body is periodic with period �. Now, taking
f = L and m = 2, the theorem follows from the remark in the preceding section.

In the case of Buffon’s needle, when K is a line segment of length l, the condition
from Theorem 2 becomes

l2
Z

�

0
j sin� sin(�+ �)j d� =

4l2

�
;

which is equivalent with

Z
���

0
sin� sin(�+ �) d��

Z
�

���

sin� sin(�+ �) d� =
4
�
:

This leads directly to the condition

sin�+

�
�

2
� �

�
cos� =

4
�
;

which is fulfilled by a single certain angle �, first discovered by Schuster [5] in
1974.

Again, a natural question arises. Is the case of Buffon’s needle singular or not?

THEOREM 4. For any convex body K there is a nonvanishing angle � for which
Ia and Ib are independent.

Proof. If K has constant width then Ia and Ib are independent for all �, by
Theorem 3. Otherwise, there is an � for which Ia and Ib are independent by the
Proposition, part (a), and � 6= 0 by its part (b).

For the reader’s pleasure we finish the paper with the following open problem.

PROBLEM. Characterize the convex bodies K , such that the angle �, for which
Ia and Ib are independent, be unique.
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