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Abstract

Finite edge-to-edge tilings of a convex pentagon with convex pentagonal tiles are discussed.
Such tilings that are also cubic are shown to be impossible in several cases. A �nite tiling
of a polygon P is equiangular if there is a 1-1 correspondence between the angles of P and
the angles of each tile (both taken in clockwise cyclic order) so that corresponding angles are
equal. It is shown that there is no cubic equiangular tiling of a convex pentagon and hence it is
impossible to dissect a convex pentagon into pentagons directly similar to it. c© 2000 Elsevier
Science B.V. All rights reserved.
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0. Introduction

In 1940, Langford asked for a classi�cation of plane �gures that can be dissected into
four congruent pieces, each similar to the original one [3]. In 1964, Golomb studied the
general case with n pieces instead of four [1]. Ten years later, Valette and Zam�rescu
completely solved Langford’s problem and extended the question to dissections into
not necessarily congruent pieces each similar to the original, and to dissections into
pieces that have just their corresponding angles the same as those of the original [4].
In the present paper we treat this last extension and discuss the problem of dissecting

a convex pentagon P into �nitely many pieces, each of which is also a convex pentagon.
Throughout the paper, the term pentagon always refers to a convex pentagon.
When a pentagon P is dissected into a �nite number of pentagons, we obtain a

�nite tiling of P with pentagonal tiles, in the sense of Gr�unbaum and Shephard [2]
(see Fig. 1). In what follows, we use the usual terminology from tiling theory [2].

∗ Corresponding author.
E-mail address: schattdo@moravian.edu (D. Schattschneider).

0012-365X/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(99)00390 -8



114 R. Ding et al. / Discrete Mathematics 221 (2000) 113–124

Fig. 1.

So, for example, every tiling has edges and vertices. The pentagon P has vertices and
edges, too, but in order to avoid confusion, we shall instead refer to the corners and
sides of P. If every edge of each pentagon (including P) is an edge of the tiling, then
the tiling is usually called edge-to-edge. The tiling in Fig. 1(ix) is an edge-to-edge
tiling in this strict sense. However, we shall focus our attention only on the interior of
the pentagon P when we speak about an edge-to-edge tiling of P. In this sense, every
tiling in Fig. 1 is edge-to-edge. In what follows, the term tiling always refers to an
edge-to-edge tiling of P, and tile refers to a convex pentagonal tile.
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If a side of P contains no vertex in its relative interior, the side is said to be simple.
So in Fig. 1(ix), each side of P is simple, while in Fig. 1(v), P has two non-simple
sides and in Fig. 1(vii), P has one non-simple side. When we dissect a tile according
to a special pattern, we may say the pattern is embedded into the tile. For example,
if we embed the pattern of Fig. 1(v) into a boundary tile of the tiling in Fig. 1(i),
with non-simple sides on the boundary sides of P, we obtain a new edge-to-edge tiling
(Fig. 1(xiii)). The valence of a vertex is de�ned to be the number of edges incident
to the vertex.

1. In�nitely many tilings

It is easily seen that a pentagon can always be dissected to produce a tiling by n
pentagons for n¿6. Once tilings have been obtained for 66n610 tiles (see Fig. 1),
the tiling for n = 6 can be embedded in one pentagon tile in each of these �gures,
giving a tiling with n+5 pentagons. This process can be repeated so as to give tilings
for all n¿6. This procedure will not produce edge-to-edge tilings for n¿11. However,
we can prove that edge-to-edge tilings are possible.

Theorem 1. A pentagon P can always be dissected into n pentagons which form an
edge-to-edge tiling of P; for any n¿6.

Proof. Fig. 1 shows edge-to-edge tilings for 66n613. New edge-to-edge tilings can
be constructed from these in at least three ways: (1) embed tiling (v) for n = 9 into
a tile with two sides on the boundary of P such that the two non-simple sides go to
the boundary sides; (2) embed tiling (vii) for n = 10 into any boundary tile with the
only non-simple side on the boundary; (3) embed the tiling (ix) for n = 11 into any
tile of the tiling. In particular, edge-to-edge tilings for n= 14 and 15 are obtained by
procedures (1) and (2) applied to the shaded tile in a tiling for n=6 (see Fig. 1). The
procedure described in (3) produces from an m-tiling a new (m + 10)-tiling, so that
repeated application of the procedure to the tilings for 66n615 produces edge-to-edge
tilings for all n¿6.

For any edge-to-edge tiling T of a pentagon P, we introduce the following notation.
f is the number of tiles in T; v is the number of vertices of T, and e is the number
of edges of T. Recall that Euler’s formula for planar graphs states v + f = e + 1.
We also will use the following notation: vc is the number of 2-valent vertices of T
(these are necessarily at corners of P), vb is the number of remaining vertices of T
on the boundary of P, and vi is the number of vertices of T in the interior of P. Then
v= vb + vc + vi.
For edge-to-edge tilings, Euler’s formula gives a simple lower bound on the number

of tiles.
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Fig. 2.

Proposition 1. Let T be any edge-to-edge tiling of a pentagon P. Then f¿vb−vc+6
and in particular f¿vb + 1.

Proof. Each tile in the tiling counts 5 vertices; each interior vertex is counted by at
least three tiles, each vertex on the boundary is counted by at least two tiles, except
that each 2-valent vertex is counted by only one tile. Thus,

3v65f + vb + 2vc: (1)

Let eb be the number of edges on the boundary of P; note eb = vb + vc. Each tile in
the tiling counts 5 edges; each interior edge is counted by two tiles while each edge
on the boundary of P is counted by only one tile. Thus,

2e = 5f + eb = 5f + vb + vc: (2)

Using (1) and (2), we solve for v and e and substitute in Euler’s formula, then multiply
by 6 to obtain the inequality

10f + 2vb + 4vc + 6f¿15f + 3vb + 3vc + 6

and the result follows.

2. Cubic tilings

Now, we restrict our attention to edge-to-edge tilings of a pentagon P in which each
vertex of the tiling has valence three, with the exception of the corners of P, which
may have valence two or three. We call such a tiling a cubic tiling. Although we do
not know if there are cubic edge-to-edge tilings of P for every n¿6, we can prove
that there are in�nitely many of such tilings.

Theorem 2. There are in�nitely many cubic edge-to-edge tilings of P.

Proof. Fig. 1 shows cubic tilings for n = 6; 7; 8; 9; 10; 11, and 16. Where vertices of
these graphs are labeled a and b, we can join the corresponding vertices a′ and b′ of the
graph in Fig. 2 to produce a new cubic tiling as in Fig. 3. By repeating this procedure
with the new graph, we obtain an in�nite family of cubic edge-to-edge tilings. (In fact,
this process produces tilings with n tiles for n = 7 + 10k; 8 + 10k; 9 + 10k; 10 + 10k,
and 11 + 10k; k¿1.)
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Fig. 3.

Remark 1. If T is a cubic tiling of a pentagon P, then T has at least as many
3-valent boundary vertices as boundary tiles. To see this, orient the edges of the tiling
T on the boundary of P in a clockwise manner. Then every boundary tile has at
least one 3-valent vertex that is an initial vertex of one of these oriented edges. Fig. 3
illustrates the case where there are more 3-valent boundary vertices than boundary
tiles. Here there are 14 boundary tiles, counted by the vertices shown as small circles,
beginning with the vertex labeled 1, moving clockwise, and ending with 14. Note there
are two additional 3-valent boundary vertices that are not used in the count, since then
the two center tiles would be counted twice.

The following theorem shows that the number of tiles in a cubic tiling of a pentagon
depends only on the number of vertices on the boundary.

Proposition 2. Let T be a cubic tiling of a pentagon P. Then;
(i) f = vb − vc + 6;
(ii) vi − vb + 2vc = 10;
(iii) f = vi + vc − 4;
(iv) 2f = vi + vb + 2.

Proof. (i) The argument in Proposition 1 holds with the inequality as an equation
since every vertex is 3-valent except the 2-valent corner vertices.
(ii) In a similar counting argument, each interior vertex counts three tiles, each

3-valent boundary vertex counts two tiles, and each 2-valent vertex counts one tile;
each tile is counted by �ve vertices. Thus,

5f = 3vi + 2vb + vc: (3)

Each interior vertex and each 3-valent boundary vertex counts three edges and each
2-valent vertex counts two edges; each edge is counted by two vertices. Thus,

2e = 3vi + 3vb + 2vc: (4)

We use v = vi + vb + vc and then (3) and (4) to substitute for v; f, and e in Euler’s
formula, and multiply by 10 to obtain

10vi + 10vb + 10vc + 6vi + 4vb + 2vc = 15vi + 15vb + 10vc + 10

from which the result follows.
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(iii) results from adding (i) and (ii).
(iv) results from adding (i) and (iii).

Corollary. Every cubic tiling T of a pentagon has an interior tile. Hence; f¿6.

Proof. Let fi be the number of interior tiles and fb be the number of boundary
tiles. Then by Proposition 2, f = fi + fb = vb − vc + 6. Since fb6vb (Remark
1), it follows that vb − vc + 66fi + vb, hence 6 − vc6fi. Since vc65, we have
fi¿1. Choose an interior tile of the tiling. Since all tiles are convex, each of the �ve
edges of the interior tile is shared with a di�erent pentagon tile, so the tiling has at
least six tiles.

Remark 2. If there is a cubic tiling of a pentagon P in which every tile has the same
kind of angles as P (i.e., P and each tile in the tiling have the same number of acute,
right, and obtuse angles) then the angles of P cannot all be obtuse, because at any
3-valent boundary vertex of the tiling one angle must be acute or right. On the other
hand, since the angles of P sum to 3�; P cannot have more than three angles that are
acute or right.

This remark and the above results imply that there cannot be particular kinds of
cubic tilings.

Proposition 3. There is no cubic tiling of a pentagon P that satis�es any one of the
following conditions:
(i) P and each tile in the tiling have three acute angles.
(ii) P and each tile in the tiling have two acute angles and one right angle.
(iii) P and each tile in the tiling have one acute angle and two right angles.
(iv) P and each tile in the tiling have one acute angle and no right angles.
(v) P and each tile in the tiling have no acute angles and one or two right angles.

Proof. (i)–(iii): The number of acute angles and right angles in the tiling is 3f. At
each interior vertex of the tiling there is at most one acute angle or right angle, and at
each 3-valent boundary vertex there are at most two angles that are acute or right; there
are at most three 2-valent vertices that have acute or right angles. Thus 3f6vi+2vb+3.
Adding (iii) and (iv) of Proposition 2 gives 3f=2vi + vb + vc− 2, which then implies
vi − vb65 − vc. Proposition 2(ii) says vi − vb = 10 − 2vc, so 5 − vc60; and since
vc65, we must have vc = 5. So there are no 3-valent boundary vertices at corners of
P. Also, vi = vb and so 3f = 2vi + vb + 3 = 2vb + vi + 3. Let vb = vba + vbr, where vba
is the number of 3-valent boundary vertices at which there are acute angles, and vbr
is the number of 3-valent boundary vertices at which there are right angles. Then the
number of acute and right angles in the tiling is 3f= vba + 2vbr + vi + 3=2vb + vi + 3,
hence vba + 2vbr = 2vb = 2vba + 2vbr. This implies vba = 0; there are no acute angles
at 3-valent boundary vertices. This shows that case (i) is impossible. For cases (ii)
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and (iii), recall that the tiling has at least one interior tile. So in case (ii), there is at
least one interior vertex with a right angle. Including corner angles, this gives at least
2vb +2 right angles and at most vi + 1 acute angles in the tiling. But since vi = vb, this
makes it impossible for the tiling to have twice as many acute angles as right angles.
In case (iii), there are at least two interior vertices with right angles. Including corner
angles, this gives at least 2vb + 4 right angles and at most vi − 1 acute angles in the
tiling. But since vi = vb, it is impossible to have twice as many right angles as acute
angles.
(iv) Since no tiles in the tiling have right angles, there is exactly one acute angle at

each 3-valent boundary vertex not at a corner of P. At any 3-valent vertices at corners
of P there will be two acute angles, and there is one corner 2-valent vertex of P with
an acute angle. Thus there are at least vb + 1 acute angles in the boundary tiles. But
then there are at least vb + 1 boundary tiles (since each tile has exactly one acute
angle), a contradiction to fb6vb (Remark 1).
(v) If P has k boundary tiles, they contain m right angles, where k6m62k. But

there are at least k 3-valent boundary vertices (Remark 1), and at each of these there
are 2k right angles, and there are an additional one or two right angles at corners of
P. However, the inequalities 2k + 16m and 2k + 26m are impossible.

3. Equiangular cubic tilings

We say a tiling of a pentagon P is equiangular if for each tile in the tiling there
is a correspondence between the angles of the tile and those of P (each taken in a
clockwise cyclic order) so that the corresponding angles of the two tiles are equal.
The long list of equiangular tilings of a quadrilateral by four tiles in [4] contains

three cubic tilings (Table I, No. 1 and No. 3k with two tilings). The situation changes
when we tile the pentagon. Do equiangular tilings of a pentagon exist? We do not
know the answer to this general question, but for cubic tilings, the answer is no. The
remainder of this paper is devoted to proving this. An immediate consequence of this
fact is that there can be no cubic tiling of a pentagon by tiles all directly similar to
the pentagon.

Theorem 3. There is no cubic equiangular tiling of the pentagon.

Proof. Suppose we have a cubic tiling of a pentagon P. Throughout the proof, the
corners of the pentagon P will be a; b; c; d; e (in clockwise order), having angles
�; �; 
; �; �, respectively. We will also follow the convention of listing the two angles
at any 3-valent boundary vertex in clockwise order.
P must have at least one acute or right angle and can have at most three angles that

are acute or right (Remark 2). Proposition 3 shows six cases impossible; there are only
three remaining cases, which our proof considers separately. The equiangular condition
of the tiling is essential in the proofs of these cases. Indeed, for each of these cases,
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Fig. 4.

Fig. 5. The pentagon P and its six tiles each have three right angles and two 3�=4 angles.

Fig. 6. The pentagon P and its six tiles each have angles of �=3; �=2; 2�=3; 2�=3 and 5�=6.

there do exist cubic tilings of a pentagon P that are not equiangular but for which the
angles of the pentagon and the angles of the tiles are the same (Figs. 5, 6) or of the
same type (Fig. 7).
Case I: The minimal angle of P is �=2. By Proposition 3, P has exactly three right

angles. Since P has no acute angles, at each 3-valent boundary vertex of the tiling
both angles must be �=2.
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Fig. 7. The pentagon P and its nine tiles each have acute angles �=3 and 4�=9 and three obtuse angles. The
obtuse angles are not the same for all tiles.

Suppose �rst that the right angles are not consecutive; let them be at corners a; b; d.
No tile can have ab as its edge since another vertex of the tile would have to be on ae
or bc, so the tile would have 3 consecutive right angles, a contradition. Thus the tile
containing corner a has a vertex on the interior of ab and the interior of de. Similarly,
the tile containing corner b must have a vertex on the interior of cd. But then the tile
containing corner d will have 3 consecutive right angles, a contradition.
Now suppose that the right angles are consecutive; let them be at corners a; b; c. The

existence of a 3-valent vertex on de would imply that the tile with vertex d has angle
� between two right angles, a contradiction. Thus there is a tile T with edge de and
clearly it has a vertex a′ on the interior of ae or cd; we may suppose a′ ∈ ae. If T
also contains c, then the �fth vertex b′ is on bc, and the other tile with the edge a′b′

has an obtuse vertex on aa′ or bb′, impossible. So T has a vertex c′ on cd di�erent
from c; let b′ be its �fth vertex. At this interior vertex b′ the angles are �=2; �, and �
(indeed, these three angles must occur at every interior vertex of the tiling). The three
possibilities for the tiling are shown in Fig. 4. But in the �rst two cases there is no
interior tile, and in the third, the tiling has an interior tile with a right angle between
two obtuse angles, hence it cannot have three consecutive right angles, a contrdiction.
Case II: P has precisely one acute angle. Let �¡ �=2. By Proposition 3, P also has

exactly one right angle, so we may assume that � and 
 are obtuse. Clearly vertex a
is 2-valent.
Since a; b; c; d cannot belong to the same tile, the �rst 3-valent vertex a, on the

boundary of P that occurs clockwise after a occurs before d. Label all the consecutive
3-valent vertices a1; : : : ; ak on the boundary of P, written in clockwise order, between a
and the corner with a right angle. Let �i; ’i be the two angles at ai (taken in clockwise
order). For each i, either both angles at ai are �=2 or �i is obtuse and ’i = � (since
the next two angles that follow � clockwise in any tile must be obtuse). For each ai
on ab (if there are any), �i = � and ’i = �, so b is 2-valent. If there are no 3-valent
vertices on bc or cd (not even at the corners), then the tile with vertices b; c, and d
has a vertex ai on ab and its �fth vertex v is between d and e. The angles at v must
be � and 
= �− �. Since �¿�=2; 
 cannot be obtuse, contradiction. So there are some
3-valent vertices on bc or cd. If for all vertices ai no ’i equals �=2, then all ’i equal
�. This leads to a contradiction in the tile Tk containing ak and the corner with a right
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angle (if � = �=2, there can be at most one obtuse angle in Tk following �, and if
�= �=2, there can be at most two obtuse angles in Tk following �).
Now suppose that some ’i equals �=2 and � = �=2. In the tile that contains angle

�i = �=2, that angle must be preceded by two obtuse angles, hence the only vertices
of bc are b and c, and ai belongs to cd and is not a corner. It follows that ai+1 also
belongs to cd and �i+1 is obtuse, hence ’i+1 = �. This forces the next vertex ai+2, and
all the remaining vertices, up to ak , to belong to cd. But then the tile with vertices ak
and d has two consecutive non-obtuse vertices, a contradiction.
Finally, suppose that some ’i equals �=2 and �= �=2. In the tile that contains angle

�i = �=2 that angle must be preceded by three obtuse angles, hence the only vertices
on bc and cd are b; c, and d and ai belongs to de and is not at a corner. Let Ti be
the tile with angle ’i. Since ’i=�=2, the next clockwise angle in Ti must be �, hence
ai+1 is also on de. But then Ti must have two consecutive vertices ai−1; ai−2 on ab at
which �i−1 = � and ’i−2 = 
, a contradiction.
Case III: P has precisely two acute angles. Let �¡ �=2. By Proposition 3, P has

no right angles, so we may assume that � and 
 are obtuse.
(i) Suppose that the two acute angles are not equal. Then the same acute angle,

say �, must occur at every non-corner 3-valent vertex on the boundary of P, since
otherwise four di�erent angles of P would sum to 2�, impossible.
We �rst assume that a is a 2-valent vertex. As in Case II, there are consecutive

3-valent vertices a1; : : : ; ak on the boundary of P, written in clockwise order (some
possibly at corners), between a and the corner with the other acute angle (either d or
e). Let �i; ’i be the two angles at ai (taken in clockwise order). For each ai on ab (if
there are any), �i = � and ’i = �, so b is 2-valent. If there are no 3-valent vertices on
bc or cd (not even at the corners), then the tile with vertices b; c, and d has a vertex
ai on ab and its �fth vertex v is between d and e. The angles at v must be � and �− �,
and one of these angles equals �. By assumption, � 6= �, so � = � − �. But then the
other tile with vertices ai and v has two angles equal to �, contradiction. Thus there
must be some 3-valent vertices ai on bc or cd. Each such ai not at a corner has ’i=�
since in any tile, � must be followed clockwise by two obtuse angles and no tile can
have two angles �. If ’i = � for all i, then in the tile Tk with angle ’k = �, angle �
will not be followed clockwise by angles �; 
; � (if �¡ �=2, there can be at most one
obtuse angle in Tk following �, and if �¡ �=2, there can be at most two obtuse angles
in Tk following �), contradiction.
So ’i 6= � for some i and ai = c or ai = d. If ai = c there must be another vertex aj

on bc clockwise after b with �j = 
 and ’j = � and hence �i = � and ’i = � or �. But
then � + 
= � and either � + �= 
 or � + � = 
, impossible since then four di�erent
angles of P sum to less than 2�. If ai 6= c but ai = d then �i = � or 
 and ’i = �. If
�i = �, there must be another vertex ai−1 6= c on cd or on bc (if �= 
) with ’i−1 = �
and �i−1 = � or 
. Thus, �+ �= � and either �+ �= � or �+ 
= �, impossible since
then four di�erent angles of P sum to less than 2�. If �i = 
 then there is a vertex
ai−1 6= c on cd (if � = 
) or on bc with ’i−1 = � and �i−1 = � or 
. Thus, 
+ � = �
and either � + �= � or � + 
= �. If � + �= �, then � + �+ 
+ �¡ 2�, impossible.
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So � + 
 = � and 
 + � = �, which implies that �¡�, hence e is 2-valent. Since de
must contain a further vertex, ak is on de and �k = �; ’k = �. But then �+ 
= � and
�+ �= �, impossible since 
+ �= �.
Finally, suppose that a is a 3-valent vertex. If the angles at a are �; � then there

must be a vertex v on ae with v 6= e since otherwise the tile containing vertices a and
e would have two angles �. At the �rst such v adjacent to a, the angles are �; � so
�+ �= �. Let T and T ′ be the adjacent tiles that share vertex a. Then T and T ′ have
angles � and � at their other common vertex (on the interior of P), absurd since then
the third angle at that vertex must be �.
So the angles at a are �; �. Let T be the tile with vertex d and let the other vertices

of T be (clockwise) e′; a′; b′; c′. If e′ is between d and e, then the angles there are �; �.
The vertex a′ is in the interior of P and the angle of T at a′ is �. In the adjacent tile
with edge a′e′, the angle at a′ is �, impossible since then the third angle there is �.
So e′ = e and e is 2-valent. Since the angle in T at a′ is �, vertex a′ is between a
and e. Either (1) b′ is in the interior of P and c′ is between c and d, or (2) b′ is
between b and c and c′= c. In (1), the angles at c′ are � and 
= �− �. Let T ′ be the
adjacent tile with edge b′c′. T ′ must have angle � at its vertex v that precedes c′ and
so either �+ �= � (if v is between c and c′), �= 
 (if v= c is 2-valent), or �+ �6

(if v= c is 3-valent). In every case, �+ 
+ �+ �¡ 2�, impossible. In (2), the angles
at b′ are �; �, hence the angles at a′ are also �; �. In the other tile with edge a′b′ the
next angle clockwise after � must be 
, hence this occurs at a 3-valent vertex on aa′,
and so 
+ �= �. But then �+ � + 
+ �¡ 2�, impossible.
(ii) Now suppose that the two acute angles are equal. At any 3-valent boundary

vertex not at a corner of P the angles are �; � − �, whence some obtuse angle of P
equals �−� and both other obtuse angles are larger (otherwise the two angles not larger
than �− � plus the two angles equal to � will sum to at most 2�). This implies that
at any 3-valent corner (if there are any) there are two angles equal to �. Otherwise, at
a 3-valent corner one angle would be � and the other an obtuse angle less than �− �,
which we just saw was impossible.
We �rst consider the case in which the acute angles are adjacent; we may assume

� = �¡ �=2. Let T be the tile with vertex e and let the remaining vertices of T be
(clockwise) a′; b′; c′; d′. Suppose a′ = a. Then two vertices of T (either b′ and d′ or
b′ and c′ or c′ and d′) are 3-valent vertices not at a corner of P. In every case, this
implies that T has two obtuse angles equal to �−�, contradiction. Thus a′ is a 3-valent
vertex between a and e and the angles at a′ are �; � − �. One of the following must
occur: (1) d′ = d and c′ is between c and d, (2) d′ = d, c′ = c, and b′ is between b
and c, or (3) d′ 6= d and d′ is between d and e. In (1), the angles at c′ are �; 
, and
hence the angles at a′ are also �; 
. The tile T ′ that shares vertex a′ with T has angle
� at its next clockwise vertex v after a′, hence v 6= a and v is a 3-valent vertex on aa′.
But then �= 
=�− �, contradiction. In (2) the angles at b′ are �; � which implies the
angles at a′ are �; �. Since, the next clockwise vertex after a′ on ae must have angle

, we �nd (arguing as in (1)) that � = 
 = � − �, contradiction. In (3), the angles at
d′ are �; �, and hence the angles at a′ are also �; �. Any other vertex between a′ and
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a must also have angles �; �. This implies that the tile with vertex a must have � as
its next angle clockwise after vertex a. Since, every 3-valent vertex between a and b
(if there are any) must have angles �; �, it follows that b is 3-valent and has angles
�; �. If there is no other 3-valent vertex on bc then 
 = � and the tile with vertex c
has 
 as its next angle clockwise after c. This angle either occurs at d or between c
and d, and in either case 
 = �, contradiction. So there is a 3-valent vertex � 6= b on
bc. Either � = c and has angles �; �; or � is between b and c and has angles �; �
(since � 6= �). In the second case, every 3-valent vertex between b and c has angles
�; � which implies that c is 3-valent and has angles �; �. In the same manner, we �nd
that d is 3-valent and has angles �; �. But then 2� = � = 
= �, contradiction. So this
�rst case is impossible.
Now suppose that the acute angles are not adjacent; we may assume �= �¡ �=2.
Suppose �rst that �= �− �. The tile T with vertex d cannot have a 3-valent vertex

on cd or bc, otherwise 
 or � equals �, impossible. So T has vertices a′; b; c; d; e′ with
a′ on ab and e′ on de. The angles both at e′ and at a′ are �; �. Thus the adjacent tile
with edge a′e′ must have angle � at its next clockwise vertex after e′. But this implies
� = �, contradiction.
Now suppose that 
 = � − �. (By symmetry, this also covers the case � = � − �.)

There can be no 3-valent vertices between a and b or between d and e, otherwise �
or � equals 
, impossible. Since vertices b; a; e; d cannot belong to a single tile, the tile
T with vertex d must have a 3-valent vertex on ae. Suppose T has no 3-valent vertex
on cd. Then T must have a 3-valent vertex b′ between b and c with angle � at b′,
impossible since � 6= 
. Thus T has a 3-valent vertex c′ between c and d and c′ has
angles �; 
. This implies that the vertex e of T must be 2-valent and hence the next
clockwise vertex a′ of T is between a and e with angles �; 
. The last vertex b′ of
T has angle � and the other tile with edge a′b′ must also have angle � at b′. Since
every 3-valent vertex between c and c′ has angles �; 
, the other tile with edge b′c′

must have angle � at b′. Hence 2� + � = 2�. But � + � + � = 2� also, which implies
� = �, impossible. This completes the proof.
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