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On the Perimeter of a Triangle 
in a Minkowski Plane 
H. Maehara and T. Zamfirescu 

A Minkowski plane is a plane endowed with a norm that is not necessarily Euclidean. 
The Minkowski length of a curve in a Minkowski plane is defined in a manner analo- 
gous to the way it is defined in the Euclidean case. A circle of radius r in a Minkowski 
plane with norm I|| II is the locus of points X satisfying IX - P II = r for a fixed 
"center" P. It is a convex curve that is symmetric with respect to its center. Golab's 
theorem shows that the Minkowski length of a circle of unit radius lies between 6 and 8 
(see [2]). Let L denote the Minkowski length. We establish the following: 

Theorem 1. Let ABC be a triangle in a Minkowski plane, and suppose that one is the 
minimum radius of a circle that encloses the triangle ABC. Then 4 < L(ABC) < 6. 

Since there is an arbitrarily thin triangle with two sides close to a diameter of the 
circle, the lower bound 4 cannot be improved in any Minkowski plane. For the case of 
the Euclidean norm it is not difficult to see that the upper bound 6 can be reduced to 
3/3 [1]. However, in the max-norm Il(x, y)IIo = max{Ixl, lyl} any three comers of 
the unit circle (which is a Euclidean square) form a triangle with perimeter 6. Hence 
the upper bound of the theorem cannot be improved in general. 

Proof Let r be a circle circumscribed about ABC in the sense that it has smallest 
radius among all circles that contain A, B, and C in their convex hulls. It is easily seen 
that either the center of the circle is inside the triangle or on one of its sides, or there 
exists a congruent circumscribed circle with this property. So we may assume that the 
center of F is the origin O and lies inside ABC or on one of its sides. The circle r is 
supposed to have radius 1. Since I||A - BII < 2, IIB - CII < 2, and |IC - AI| < 2, we 
have L(ABC) < 6. 

We have to show that L(ABC) _ 4. If I||A - BII = 2, then 

||A - BII + II|B - C|| + I||C - Al|| A - BII + IIB - Al = 4. 

Hence we consider the case that ||A - B II, II B - CII, and ||C - All are all less than 2. 
Notice that in this case O lies inside ABC, while A, B, and C all lie on r. 

Let D, E, F, G, H, and I be points on the sides of ABC such that ADOI, BFOE, 
and CHOG are parallelograms (see Figure 1). Then 

II||A - D|| + ||A - = IIA - DII + ||D|| ||AII = 1, 

||B - E| + ||B - F|| = |B - E| + \\E\\ _ \B\ = 1, 

||C - G|| + ||C - H|| = ||C - G|| + ||G|| > ||C|| = 1. 
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Figure 1. 

To prove that L(ABC) > 4, it is enough to show that 

||D-E||+|IIF-GII + IIH-I > 1. 

Among the similar triangles DEO, OFG, and IOH, we may suppose that DEO is the 
biggest and IOH the smallest. Then I D - El i II F|| _ I |I. Let J be the point such 
that OFGJ is a parallelogram, and let K be the intersection of GJ and AC. Then the 
triangle KGC is a translate of IOH, and 

II||D - E|| IIF|| II= | J - GII > II J - KII, 

lIF - Gll = IJII, 

IIH - III|| = ||IIC - K||II. 

Therefore, 

II|D - EI|| + IIF - GII + IIH - I II > IIJ - KII + IIJ||||II + IIC - KII 
> IICII= 1. U 

Remark. The lower bound in the theorem is valid for any closed curve instead of a 
triangle. More precisely, let i2 be a simple closed curve in a Minkowski plane, and let 
one be the smallest radius of a circle that encloses 2. Then L (2) > 4. 
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