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Abstract. We investigate here the hamiltonicity and traceability of a
class of polytopes generalizing pyramids, prisms, and polytopes with
Halin 1-skeleta.
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1 Introduction

In this paper we introduce a class of polytopes including pyramids and prisms,
generalizing those polytopes having Halin graphs as 1-skeleta. We call them k-
pyramids, and investigate here their hamiltonian properties.

A polytope in R3 is said to be hamiltonian, or traceable, if its 1-skeleton has
a hamiltonian cycle, respectively path. Two facets of a polytope will be called
neighbouring, if they share a common edge. A polytope or one of its facets is called
simple, if each of its vertices lies on precisely three edges of the polytope.

A polytope P is called a k-pyramid, if it has at most k pairwise disjoint simple
facets F1, ..., Fk, called bases, such that every other facet has some neighbouring
base. We call the k-pyramid P belted if some pair of bases (if there are at least two)
has no common neighbouring facet.

Of course, a pyramid is a particular case of a 1-pyramid, while any (combinato-
rial) prism is a particular case of a 2-pyramid.

The 1-skeletons of 1-pyramids are precisely the well-known Halin graphs. It is
proven in [2] that they are all hamiltonian (even 1-hamiltonian, i.e. they are hamilto-
nian and remain hamiltonian when removing an arbitrary vertex). Is hamiltonicity
preserved in k-pyramids, for larger values of k? This is the question we want to
address here.

Other generalizations of Halin graphs and investigations of their hamiltonian
properties have already been made by Skowrońska [6], Skowrońska and Sys lo [7],
Skupień [8], and Malik, Qureshi and Zamfirescu [5].

Consider a k-pyramid. Its 1-skeleton is a planar, 3-connected graph with at most
k pairwise disjoint cycles called basic cycles which bound the bases. It is important
to observe that this graph need not be cubic, but all vertices on the basic cycles
have degree 3.
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We say that a belted 2-pyramid P with basic cycles C1, C2 is simply belted if
every vertex of the unique cycle disjoint from C1 ∪ C2 in the 1-skeleton of P is of
degree 3.

Let H be a Halin graph, v a vertex on its outer cycle (the basic cycle) and
v1, v2, v3 the neighbours of v. Then H − v is called a reduced Halin graph and
v1, v2, v3 its endpoints. The following lemma will be used.

Lemma 1 [3]. For any pair x, y of endpoints of a reduced Halin graph, there
exists a hamiltonian path between x and y.

This allows us to contract reduced Halin graphs appearing as subgraphs of a
graph G to single vertices, without altering the hamiltonicity of G.

We shall use the following result.

Grinberg’s Criterion [4]. Let H be a hamiltonian cycle in a planar graph on
n vertices and let fj (gj) be the number of j-gons inside (respectively outside) of H.
Then we have

n∑
i=3

(i− 2) · (fi − gi) = 0.

Finally, the following simple fact will be of use.

Lemma 2. Let G be a bipartite graph, its vertices coloured black and white. For
G to be hamiltonian, the number of black vertices must be equal to the number of
white vertices.

2 Hamiltonicity of 222-pyramids

Our first main result is the following.

Theorem 1. Every non-belted 2-pyramid is hamiltonian.

Proof. Let G be the 1-skeleton of a non-belted 2-pyramid. If G is Halin, the
hamiltonicity is known [2]. If not, we embed G in the plane such that the outer
cycle is one of the basic cycles. Let us denote the inner basic cycle by A and the
outer cycle by B. Let T be one of the trees in the forest F with leaves on A ∪ B.
Furthermore, let RA (respectively RB) be the union of all regions bounded by edges
in T ∪ A (respectively T ∪ B). Let a1, ..., am be the consecutive vertices of T ∩ A,
and b1, ..., bn those of T ∩ B. Since G is planar and 3-connected, no other tree of
F has endpoints between ai and ai+1 (i = 1, ...,m − 1), or between bj and bj+1

(j = 1, ..., n− 1).
Thus, the boundary of the closure of RA∪RB is the union of the paths a1a2...am,

b1b2...bn, a path P1 joining a1 and b1, and another path P2 joining am and bn.
The intersection of the closures of RA and RB is a path P3 = c1c2...ck joining a

vertex c1 on P1 and a vertex ck on P2.
Let d ∈ T − P3 be a neighbour of ci ∈ P3. The union of all paths starting at

d, not containing ci and ending as soon as A ∪ B is reached is a subtree of T . By
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Lemma 1, this subtree plus the path it spans in A∪B can be contracted to a single
vertex (on A ∪B). After performing all such contractions, T looks like in Fig. 1.

Now, each triangle can be contracted to an edge between P3 and A∪B because
if the graph obtained after contraction is hamiltonian, then so was it before the con-
traction. Thus T becomes even simpler, as depicted in Fig. 2. The paths a1a2...am,
b1b2...bn become a′1a

′
2...a

′
r, b

′
1b

′
2...b

′
s, respectively.
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Fig. 2

For this tree T , obtained after contractions, the subgraph T ∪ a′1...a
′
r ∪ b′1...b

′
s

spanned by T admits a hamiltonian path from a′1 to b′s, namely a′1...a
′
rck...c2c1b

′
1...b

′
s.

It admits a second one from b′1 to a′r, namely b′1...b
′
sck...c2c1a

′
1...a

′
r. And it admits a

third hamiltonian path from a′1 to a′r if c2 is adjacent to a vertex in A, and from b′1
to b′s if c2 is adjacent to a vertex in B. In the situation of Fig. 2, c2 is adjacent to a
vertex in A and T has the hamiltonian path a′1c1b

′
1...b

′
sckck−1...c2a

′
2...a

′
r.

If F contains an even number of trees, then paths of the first two types in each
subgraph spanned by a tree can be combined to result in a hamiltonian cycle of G.

If F has oddly many trees, then one of them has a hamiltonian path of the
third type, joining vertices on the same cycle, either A or B (see Fig. 3). Then the
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other hamiltonian paths in the remaining tree-spanned subgraphs can be alternately
chosen of the first two types, to complete a hamiltonian cycle in G. �

Fig. 3

Theorem 2. Every simply belted 2-pyramid is hamiltonian.

Proof. After the reductions mentioned in the preceding proof we arrive at a graph
as described in Fig. 4. We obviously may also perform (possibly multiple times) the
reduction of Fig. 5, which preserves non-hamiltonicity, so the graph becomes as
shown in Fig. 6.

Fig. 4

Fig. 5

This graph G has its two basic cycles C1, C2 and a third disjoint cycle (the
belt) C3. The faces of G different from the bases are quadrilaterals, pentagons, or
hexagons.
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The existence of a quadrilateral Qi between Ci and C3 (for each i ∈ {1, 2}) yields
the existence of a hamiltonian cycle H1 in the subgraph spanned by C1 ∪ C3, using
C1 ∪ C3 minus two edges of Q1, which in turn yields the existence of a hamiltonian
cycle in G using H1 ∪ C2 minus two edges of Q2 (see Fig. 6).

The existence of two quadrilaterals between C1 and C3 (or between C2 and C3)
also yields the existence of a hamiltonian cycle in G, see Fig. 7.

C1

C3

C2

Fig. 7

If none of the two mentioned situations occurs, then all faces distinct from the
bases, with at most two exceptions (a quadrilateral and a hexagon with a common
edge on the belt), must be pentagons. Then a hamiltonian cycle is depicted in Fig. 8.
�

Corollary. Every simple 2-pyramid is hamiltonian.

The following observation will be of use.

Remark. Consider (i) contracting a reduced Halin graph, (ii) contracting tri-
angles into edges as shown in Figs. 1 and 2, and (iii) contracting edges as in Fig. 5.
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If any of these contractions leads to a traceable (hamiltonian) graph, then so was
the graph before the contraction.

We conclude the description of 2-pyramids by treating the general case.

Theorem 3. Every 2-pyramid is traceable, but not necessarily hamiltonian.

Proof. We show that not all 2-pyramids are hamiltonian. In Fig. 9 we present a
belted 2-pyramid, which is non-hamiltonian. Indeed, let this graph be denoted by
G and assume it has a hamiltonian cycle H. Two situations may occur: either H
uses just two opposite edges of the basic cycle C2 (see Fig. 9), or it uses all edges
of C2 but one. If H uses the edges ab and cd (avoiding bc and ad), we delete bc
and da, contract both ab and cd to single vertices, and colour these black. Taking
the colouring of G in Fig. 9 into account, we now have a bipartite graph which is
non-hamiltonian by Lemma 2, as there are two more black vertices than white ones.
If H uses the edges ab, bc and cd, we delete da and contract the path abcd to a single
vertex, which we colour black. Again, by using the colouring of G in Fig. 9, we now
have a bipartite graph which is non-hamiltonian by Lemma 2, as there is one more
black vertex than white ones.

We prove now the traceability of any belted 2-pyramid P . We use the full power
of Lemma 1 and contract as in the proof of Theorem 1 reduced Halin graphs in the
1-skeleton of P , transform triangles into edges, then apply the reductions of Fig. 5,
to finally obtain a graph G spanned by the basic cycles C1, C2 and the belt B. We
apply the Remark to G.

Let u, v ∈ C1 be adjacent. Let u′, v′ ∈ B be neighbours of u, v, respectively.
If the facet containing the vertices u, v, v′, u′ has any further vertex, then let w

be that one adjacent to u′. If not, then let w be the vertex of B adjacent to v′ and
distinct from u′. Further, let w′ be the neighbour of w on C2.

A hamiltonian path of G is now composed by a path spanning C1 from u to v,
which continues via v′, w, w′ and visits the remaining vertices of C2, and another
path starting in u, containing u′ and visiting all vertices of B which are not on the
first path. �

6



C2 C1a

b

c

d

Fig. 9: A belted, non-hamiltonian 2-pyramid.

3 Traceability of 333-pyramids

We continue here our investigation by considering 3-pyramids.

Theorem 4. Every non-belted 3-pyramid is traceable.

Proof. If the (in this section always non-belted) 3-pyramid has at most two basic
cycles, we apply Theorem 1. If it has three, C, C1, C2, let one of them, say C, be
the outer cycle.

As in the proof of Theorem 1, using Lemma 1, we transform trees that have
their leaves on precisely two basic cycles into trees of the form shown in Fig. 2.
In such a tree we described in the proof of Theorem 1 three types of hamiltonian
paths. We now use only the first two of them, and replace the whole tree by a single
edge between the two basic cycles, keeping in mind that they can be visited by the
hamiltonian path only in the ways shown in Fig. 10.

Fig. 10

Thus, the forest of all trees between any two of the cycles C, C1, C2 becomes a
set of equally many consecutive edges between those cycles. We distinguish several
cases according to the parity of the number of edges in each set, i.e. trees in each
forest.

Situation jkl means that j edges have their endpoints on C ∪ C1, k edges have
their endpoints on C1 ∪ C2 and l have them on C ∪ C2. The numbers j, k, l will be
taken modulo 2, so j, k, l ∈ {0, 1}. There might also exist one or two trees having
their leaves on all three basic cycles.

Case I: there are no trees with vertices on all special cycles.
In this case, there are four essentially different situations jkl, namely 000, 100,

110 and 111.
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Situation 000: if k ≥ 2, we find a hamiltonian path as shown in Fig. 11. If k = 0,
the graph is hamiltonian (see Fig. 12). We conclude Case I with Situations 100, 110
and 111: see Fig. 13, 14 and 15, respectively.

Figs. 11 and 12: Situation 000 for k ≥ 2 and k = 0.

Figs. 13–15: Situations 100, 110 and 111.

Case II: there exists exactly one tree with vertices on all special cycles.
Such a tree looks after contracting reduced Halin graphs as depicted in Fig. 16.

There can be degeneracies of this aspect, but they can be deduced from the general
one.

For Situation 000, see Fig. 17.

Fig. 16

For situations 10x and 11x, see Fig. 18 and 19, respectively.
Case III: there exist exactly two trees with vertices on all special cycles.
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Fig. 17

Figs. 18 and 19: Situations 10x and 11x.

For situations 000, 100=010=001, 110=101=011 and 111: see Fig. 20, 21, 22
and 23, respectively. �

Figs. 20–23: Situations 000, 100=010=001, 110=101=011 and 111.

Theorem 5. There exist simple non-hamiltonian 3-pyramids.

Proof. Grinberg’s graph shown in Fig. 24 is, by using Grinberg’s Criterion, non-
hamiltonian, and the 1-skeleton of a 3-pyramid, with basic cycles C1, C2 and C3.

Further non-hamiltonian 3-pyramids appear in [1, items NH42.b and NH42.c in
Fig. 2 and Fig. 8]. �
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Fig. 24: A non-hamiltonian 3-pyramid with basic cycles highlighted.

4 Open Questions

Several natural questions arise. We select the following three.

Problem 1. Is every non-belted 3-pyramid hamiltonian?

Problem 2. Are all 3-pyramids traceable?

Problem 3. Let P be a simple polytope. P is certainly a k-pyramid for some
number k. How can one efficiently determine the minimal k?
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