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Abstract. Motivated by applications in numerical analysis, we inves-
tigate balanced triangulations, i.e. triangulations where all angles are
strictly larger than π/6 and strictly smaller than π/2, giving the opti-
mal lower bound for the number of triangles in the case of the square.
We also investigate platonic surfaces, where we find for each one its
respective optimal bound. In particular, we settle (affirmatively) the
open question whether there exist acute triangulations of the regu-
lar dodecahedral surface with 12 acute triangles [Itoh and Zamfirescu,
Europ. J. Combin. 28 (2007)].
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Introduction

A triangulation of a 2-dimensional space means a collection of (full) triangles cov-
ering the space such that the intersection of any two triangles is either empty, or a
vertex or an edge. We call a triangulation geodesic, if all its triangles are geodesic,
meaning that their edges are segments, i.e. shortest paths between the corresponding
vertices. In this paper we shall always refer to geodesic triangulations. A triangula-
tion is called acute if all of its angles are acute. We have a balanced triangulation,
if all angles of the geodesic triangles are strictly larger than π/6 and strictly smaller
than π/2. The lower bound of π/6 for the angles is especially appealing, because
together with the upper bound of π/2 it bounds the relevant ratio between the short-
est side and the longest side of every triangle, from below, by 1:2. This brings us
into the frame of “bounded geometry”, which deals with objects having a bounded
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ratio of edge-lengths (see, for example, [1], [12], and [6]). A recent survey on acute
and non-obtuse triangulations (the latter having angles not larger than π/2), is [14]
(see also [15]).

The motivation for selecting bounds both from above and from below stems from
mesh generation applications, anchored in numerical analysis. Very flat and very
sharp angles are undesirable.

We shall from now on use in this paper angle measures in degrees.
Concerning algorithmic approaches on the non-obtuse triangulation of polygons

with n sides, Baker, Grosse, and Rafferty [2] presented in 1988 an algorithm yielding
a triangulation with angles no smaller than 13◦ and no larger than 90◦, as long as the
smallest angle of the input polygon had at least 13◦. Bern, Mitchell, and Ruppert
proved in [3] that there exists an algorithm creating a triangulation which requires
only O(n) triangles, improving on previous results. Yuan found in [13] a concrete
upper bound for the size of a non-obtuse triangulation of an n-gon based on work
in [3], namely 106n− 216. She also proved that one can transform any non-obtuse
triangulation needing N triangles into an acute one requiring 22N triangles.

The vertices and the edges of a triangulation form a graph. For a vertex v, d(v)
denotes its degree.

In the plane, by a1a2...an we denote the (full) n-gon with vertices a1, a2,..., an,
i.e. the convex hull of {a1, a2, ..., an}.

For points p1, p2 we denote by |p1p2| the distance from p1 to p2.

The square

We begin with the square. We know from [4] that a square needs at least eight
triangles to be acutely triangulated. Cassidy and Lord [4] also proved that there
exists no acute triangulation with nine triangles, but that there exists an acute
triangulation with n triangles for every n larger than 9.

We mention here that Eppstein discusses a slightly different problem (see [5]),
posed initially by Tromp in 1996: how to make the angles as acute as possible (i.e.
minimizing the maximal angle). For the eight-triangle solution, he found positions
of the vertices for which the maximum angle is only about 85◦, and asked if more
triangles would achieve even better angles. Motivated by Tromp’s question and a
result by Gerver [7] (who shows how to find a dissection – not a triangulation! – of a
polygon with no angles larger than 72◦, assuming all angles of the input measure at
least 36◦), Eppstein produces a triangulation requiring 14 triangles, with all angles
measuring 45◦, 54◦, 63◦, or 72◦.

Theorem 1. The square admits a balanced triangulation of size 11, and this is
best possible.

Proof. We first show that there exists a balanced triangulation of the square
with 11 triangles. Consider the triangulated square depicted in Fig. 1, and apply
gentle shifts in the directions of the arrows, in the indicated order. It is now easy
to see that for any angle α of the triangulation we have 44◦ < α < 90◦.
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Fig. 1: A balanced triangulation of the square

The second part of this proof deals with the minimality of the size. In view
of Cassidy and Lord’s result [4], it would suffice to show that there exists no bal-
anced triangulation of the square with eight or ten triangles, but our proof will be
independent of their result.

Let Q be the given square, and a, b, c, e its vertices in sinistrorsum order.
Notice that d(a) = d(b) = d(c) = d(e) = 3, while the degree of the other

boundary vertices is at least 4, and the degree of vertices interior to Q is at least 5.

Remark (♢): No edge uv traverses intQ joining two boundary vertices which
lie on consecutive sides of Q, because, if a, say, is the common vertex of the two
consecutive sides, and wuv is the triangle included in auv having uv as side, then
∠uwv > 90◦, a contradiction.

Suppose just one vertex v of the triangulation lies in intQ. As d(v) ≥ 5, there
must exist a vertex w ∈ bdQ different from a, b, c, e, say w ∈ ab. As d(w) ≥ 4, there
is a vertex u ̸= w joined to w.

Fig. 2

By Remark (♢), u ∈ ec \ {e, c}. Assume w.l.o.g. that v ∈ waeu. Then, in wbcu,
there are extra edges starting at b, c, and either w or u. This is impossible in the
absence of vertices interior to wbcu.

Now suppose just two vertices u, v lie in intQ. If there is no vertex in bdQ
distinct from a, b, c, e, then both u, v are joined to a, b, c, e, which is impossible.

Let w ∈ bdQ be a vertex, say w ∈ ab. By Remark (♢), there is a single vertex
u in intQ adjacent to a. If ub is also an edge, then v lies in the triangle abu because
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d(w) ≥ 4. Then either ∠avu > 90◦ or ∠bvu > 90◦, which is absurd. Similarly, bv is
an edge and av is no edge.

If there is no further vertex, then u is adjacent to a, w, v, c, e. But then d(v) ≤ 4,
and another contradiction is obtained. Hence, there must exist an eighth vertex
w′ ∈bdQ.

Assume first w′ ∈ bc. By Remark (♢), either eu or ev is an edge. Hence, w′

is not adjacent to any point of ae. Since d(w′) ≥ 4 and by Remark (♢), w′u and
w′v are edges. Thus, ue and uc are edges, too. Again by Remark (♢), wu and wv
are edges. As d(v) ≥ 5, there is a point w′′ ∈ wb ∪ bw′ adjacent to v. But then
d(w′′) = 3, absurd. Hence, there is no vertex w′ ∈ bc. Analogously, there is no
eighth vertex on ea.

Now we claim that there exists no edge zz′ with z ∈ ab \ {a, b}, z′ ∈ ce \ {c, e}.
If, on the contrary, there are such edges, consider the one with z closest to a and
z′ closest to e. Since d(u) ≥ 5, and since no further vertex lies on ae, u must be
adjacent to some vertex on az ∪ ez′ different from a, e, z, z′. But this vertex would
have degree 3, a contradiction. The claim is proven.

Suppose there is an eighth vertex w′ on ab. By Remark (♢) and by the previous
claim, neither w nor w′ is adjacent to any point in ae ∪ ec ∪ cb. But d(w) ≥ 4 and
d(w′) ≥ 4, whence, both w,w′ are joined to both u, v. Then either u is interior to a
triangle ww′v, or v is interior to a triangle ww′u, in contradiction with the existence
of the edges ua and vb.

Assume now the existence of an eighth vertex w′ ∈ ce. We saw that no edge
traverses intQ from a point of ab to a point of ce, in particular ww′ is not an edge
of the triangulation. Since d(w) ≥ 4 and d(w′) ≥ 4, wu, wv, w′u, w′v are edges.
Adding uv, this leads to the known acute triangulation of the square, of minimal
size. We have to show that this is still impossible as a balanced triangulation.

Let Du be the half-disc in Q of diameter ea and Dv be the half-disc in Q of
diameter bc.

Let p, q ∈ bdDu, r, s ∈ bdDv be such that

∠pae = ∠qea = ∠rcb = ∠sbc = 60◦.

Let R be the rectangle pqrs.

Fig. 3
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Since ∠bvc < 90◦ and ∠aue < 90◦, v /∈ Dv and u /∈ Du. Furthermore, as
∠bwv < 90◦ and ∠awu < 90◦, the vertex u is farther away from bc than v. This
and the inequalities ∠wbv > 30◦, w′cv > 30◦, ∠wau > 30◦ and ∠w′eu > 30◦ force
u, v ∈ R.

Let p′, s′ be the orthogonal projections of p, s on ab, respectively.
Since u, v ∈ R and both ∠uwa and ∠vwb are less than 90◦, w ∈ p′s′. Now, if m

is the midpoint of ab,

∠uwv ≤ ∠pws ≤ ∠pms = 30◦,

which is not allowed.
Hence, there must exist three vertices u, v, w in intQ.
Suppose there are no further vertices in intQ.
Assume, first, that u, v, w span a triangle ∆, and u, v, w lie in sinistrorsum order

on ∆. Of course, no vertex is inside ∆. Let u1, ..., ui be the neighbours of u outside
∆, let v1, ..., vj be the neighbours of v outside ∆, and let w1, ..., wk be the neighbours
of w outside ∆, all in sinistrorsum order. Clearly, all these points belong to bdQ.
Then ui = v1, vj = w1 and wk = u1. Since u, v, w have degree at least 5, we have
i ≥ 3, j ≥ 3 and k ≥ 3. Thus, u2, v2 and w2 have only one neighbour among u, v, w.
This means that they must be among the vertices a, b, c, e of Q. Assume without
loss of generality, that u2 = a, v2 = b, w2 = c. We observed that d(e) = 3. Then
u3 = v1 ∈ ab, v3 = w1 ∈ bc, w3 = e and w4 = u1 ∈ ea, while i = j = 3 and k = 4.
There are 11 triangles. Of this kind is also our example.

Fig. 4

Suppose now that uv, vw are edges, wu not. Let the neighbours of u be v, u1, ..., ui,
those of v be v1 = ui, v2, ..., vl, w, vl+1, ..., vj = u1, u, and those of w be w1 =
vl, w2, ..., wk = vl+1, v, all in sinistrorsum order.

Since u, v, w have degree at least 5, we have i ≥ 4, j ≥ 3, k ≥ 4.
We have

d(u1) ≥ 4, d(ui) ≥ 4, d(u2) = d(u3) = 3.

Analogously,
d(w1) ≥ 4, d(wk) ≥ 4, d(w2) = d(w3) = 3.

Since boundary vertices have degree 3 only if they are vertices of Q, it follows that,
say, u2 = e, u3 = a, w2 = b, w3 = c. It follows further that i = k = 4 and 3 ≤ j ≤ 4.
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The least number of boundary vertices, leading to the least number of triangles,
is obtained for j = 3. Then 1 ≤ l ≤ 2. In both cases there are 11 triangles. (If j = 4,
then l = 2 and the number of triangles is 12.) So, in any case, we do not obtain
fewer triangles than 11.

If the subgraph spanned by u, v, w is not connected, so, for example, if u is
isolated, then there is an edge from one boundary neighbour p of u to another one,
q. But pq cannot cut Q into a triangle and some other polygon, by Remark (♢).
Thus, pq cuts Q into two quadrilaterals, one containing u, the other v, w. Since u
has at least 5 neighbours, all on bdQ, at least one of them is no vertex of Q and has
degree 3, absurd.

We still have to treat the case of at least 4 vertices in intQ. We shall show that
any such acute triangulation consists of at least 11 triangles.

Let α0, α1, α2 be the number of vertices, edges and faces, respectively. All faces
but one are triangles. We see that α0 ≥ 9. Indeed, otherwise the vertices must be
a, b, c, e plus four in intQ. But the latter have degree at least 5, so each of them
must have at least two neighbours in bdQ. As a, b, c, e can be such neighbours for
only one interior vertex each, there must exist further boundary vertices.

Summing up the sides of all faces yields

(α2 − 1) · 3 + 1 · (α0 − 4) = 2α1,

whence 3α2 = 2α1−α0+7. Combining this with Euler’s formula gives α2 = α0+3 ≥
12. Hence, the triangulation has at least 11 triangles. �

The sphere admits a balanced triangulation of size 20, and this is best possible.
Indeed, Euler’s formula – combined with the obvious condition that every vertex
has degree at least 5 – yields the necessity of at least 20 triangles for any acute
triangulation (see also [9]), and the regular icosahedron shows a realization (with all
angles measuring 72◦).

Other regular polygons

For 5 ≤ n ≤ 11, the regular n-gon admits a balanced triangulation of size n
with an extra vertex in its centre. For larger n, instead of treating here the rather
complicated general case, we choose to present only a particular case, which displays
a technique expected to be among those used in all cases.

Theorem 2. The regular icosagon admits a balanced triangulation of size 40.

Proof. Consider a 20-gon v1...v20 with centre o. Let x2 ∈ ov2 be chosen such that
∠v1x2v2 > 30◦, for example ∠v1x2v2 = 36◦. Then |ox2| = |v1x2|, and let xi be the
points analogously obtained (i = 1, ..., 20). We have ∠v1ov2 = 18◦, ∠v1v2x2 = 81◦

and ∠v2v1x2 = 63◦. The triangles ox2x4 and v3x2x4 are congruent and have angles
measuring 36◦, 72◦, 72◦.

Thus, the triangles v2i−1v2ix2i, v2i+1v2ix2i, ox2ix2i+2 and v2i+1x2ix2i+2 (where
i ∈ {1, ..., 10}, indices mod. 20) form a balanced triangulation of size 40. �
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Fig. 5

Using this technique alone, we can construct balanced triangulations for all reg-
ular n-gons with n = k · 2m, where k,m ∈ N and k ≤ 11. Thus, the first unresolved
case is... the unlucky n = 13.

For the general case, the above technique does not suffice. We leave it open:

Problem. Determine a lower bound for the size of a balanced triangulation of
the regular n-gon.

Moreover, we formulate the following.

Conjecture. Every convex polygon with angles larger than 30◦ admits a balanced
triangulation.

The cube and the octahedron

We shall now provide balanced triangulations of all Platonic surfaces (i.e. bound-
aries of Platonic solids), all of them being optimal.

Theorem 3. The boundary of the cube admits a balanced triangulation of size
24, and this is best possible.

Proof. We use a construction from [8]: Fig. 6 exhibits a non-obtuse triangulation
of the (unfolded) surface of the cube, using 24 triangles. Now, apply gentle shifts in
the direction of the arrows, in the indicated order. As all angles remain or become
acute, the only fact yet to be proved is that they are strictly larger than 30◦. But
as in the initial non-obtuse triangulation all angles were at least 45◦, and like in the
case of the square gentle shifts will not change this dramatically.

In [8] it is proved that this is best possible concerning acute triangulations. Thus,
the minimality holds also for balanced triangulations. �

We remark here that at least four non-isomorphic balanced triangulations of the
cube exist.
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Fig. 6: A balanced triangulation of the surface of the cube

Theorem 4. The regular octahedral surface admits a balanced triangulation of
size 8, and this is best possible.

Proof. The eight faces of the regular octahedron form a balanced triangulation.
It remains to be proved that this is optimal. We show that there is no acute tri-
angulation T of the octahedral surface with less than eight triangles. Employing
a simple curvature argument, we know that each vertex of the regular octahedral
surface has curvature 720◦/6 = 120◦. This implies that no vertex of T may lie in
the interior of a triangle of T , whence, T must feature at least six vertices. Euler’s
formula now yields that there must be at least eight triangles in T . �

The dodecahedron

In [11], Itoh and Zamfirescu investigated the triangulations of the regular do-
decahedral surface. One conclusion was that the minimal size of a non-obtuse tri-
angulation is 10. They also found that no acute triangulation with less than 12
triangles exists, and gave a triangulation with 14 acute triangles. But whether an
acute triangulation with 12 triangles does or does not exist remained open. Here we
present a triangulation with 12 acute triangles for the regular dodecahedral surface.
Moreover, this triangulation is also balanced.

Lemma. If an acute triangle ∆ on the boundary surface of a regular dodecahe-
dron D or regular icosahedron I contains in its interior a vertex of D or I, ∆ must
have all angles larger than 36◦.

Proof. Clearly, each of D’s (I’s) 20 (12) vertices has curvature at least 36◦.
Let ∆ have angles α, β, and γ, and a vertex of D (or I) in its interior. We have

8



α + β + γ ≥ 180◦ + 36◦ = 216◦. As ∆ is acute, any two of its angles sum up to
less than 180◦, whence α, β, and γ must each be greater than 36◦, which proves the
Lemma. �

Theorem 5. The regular dodecahedral surface admits a balanced triangulation
with 12 triangles.

Proof. Assume the edge-length of the regular dodecahedron to be 1. We present
now an acute triangulation with 12 triangles, see Fig. 7.

Fig. 7

Denote the upper and lower pentagonal faces of the dodecahedron by α and β,
the five pentagons adjacent to α by s1, s2, s3, s4, s5, and those adjacent to β by s′1,
s′2, s

′
3, s

′
4, s

′
5, so that s′i, si, si+1 have a common vertex, and s′i, s

′
i+1, si+1 have a

common vertex (indices taken modulo 5).
Let {i} = s1∩s′1∩s′5, {j} = s2∩s3∩s′2, {o} = s3∩s4∩s′3, and {m} = s′4∩s′5∩s5.

Let a (resp. b) be the intersection point of the angular bisector of the angle at i (resp.
j) in s1 (resp. s′2) and the diagonal of s1 (resp. s′2) determined by the two vertices
adjacent to i (resp. j). Choose c ∈ s′3 ∩ s4, d ∈ s′4 ∩ s5 such that |oc| = |dm| = 5

16
.

Put {e} = α ∩ s4 ∩ s5, {f} = α ∩ s2 ∩ s3, {g} = β ∩ s′1 ∩ s′5, and {h} = β ∩ s′3 ∩ s′4.
We get a triangulation T of the regular dodecahedral surface with 12 triangles:

aef, abf, bcf, cef, cde, ade, abg, bgh, bch, cdh, dhg, and adg.

Noticing that there are two geodesics between a and g (resp. b and f), we use the
one passing through s′1 (resp. s2).

We require the following trigonometric values.
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sin 18◦ =

√
5− 1

4
, cos 18◦ =

√
10 + 2

√
5

4
,

sin 36◦ =

√
10− 2

√
5

4
, and cos 36◦ =

√
5 + 1

4
. (1)

First part. T is a geodesic triangulation.

Here, we only need to show that the edges ab, bc and af are segments; for the
others no proof is needed.

Fig. 8

In Fig. 7, the line-segment ab has the smallest length among all of the paths
between a and b that pass through s1, s

′
1, s2 and s′2. Furthermore, we have

|ab|2 = |aj|2 + |bj|2 = (3 cos 36◦)2 + sin2 36◦ =
9(3 +

√
5)

8
+

5−
√
5

8
= 4 +

√
5.

Now we consider the paths between a and b that pass through s1, s
′
1, s

′
2 (for those

passing through s1, s2, s
′
2, we are led to the same conclusion). Clearly the path ab1,

as shown in Fig. 8, has the shortest length. (For the sake of convenience, in this
unfolding we denote b by b1.) Now let w be the perpendicular projection of b1 on
aj. Then

|ab1|2 = |aw|2 + |b1w|2

= (sin 36◦ + cos 36◦ sin 36◦)2 + (2 cos 36◦ + cos2 36◦)2

=
14 + 5

√
5

4
> 4 +

√
5.

Hence, ab is indeed a segment.
Concerning bc, consider the orthogonal projection q of c on bj. Then

|bc|2 = |cq|2 + |bq|2

=
(
2 cos 36◦ + 5

16
cos 36◦

)2
+
(
sin 36◦ − 5

16
sin 36◦

)2
=

589 + 156
√
5

256
.
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Fig. 9

Another short path between b and c goes through s′2 and s′3, so rotate s′3 around
s′2∩s′3 to become coplanar with s′2, and denote the new position of c by c1, as shown
in Fig. 9. We have

|bc1|2 =
(
cos 36◦ + 1 + 5

16
sin 18◦

)2
+
(

5
16
cos 18◦

)2
=

505 + 200
√
5

256
>

589 + 156
√
5

256
.

Hence bc from Fig. 7 is indeed the segment from b to c.
Finally, in the unfolding of Fig. 7, denote the position of f in α by f1. The line-

segment af1 (through s1 and α) is longer than the segment af as shown in Fig. 7
(through s1 and s2), because, in the triangles akf and akf1, ∠a1kf < ∠a1kf1, where
{k} = α ∩ s1 ∩ s2. (See also Fig. 10, where a is denoted by a1.) Hence af , too, as
shown on Fig. 7, is indeed a segment.

Second part. T is an acute triangulation.

We start with the triangle aef . Since ∠kfe = 72◦ and ∠lfk = 54◦, where l is the
midpoint of s′1∩s2, to prove that ∠afe < 90◦ we just need to show that ∠a1fl > 36◦

in Fig. 10. Indeed,

tan∠a1fl =
|a1l|
|fl|

=
1
2
+ cos 36◦

sin 36◦ + cos 18◦
> tan 36◦ =

sin 36◦

cos 36◦
,

which is equivalent to

1

2
cos 36◦ + cos2 36◦ > sin2 36◦ + sin 36◦ cos 18◦.

Using (1), we get 2+
√
5

4
> 5+

√
5

8
, which is obviously true.

Denote the middle point of s1∩α by w′, the centre of s2 by x, and s1∩s2∩s′1 by {u}
in Fig. 10. Note that ∠eaf = 2∠w′a1f = 2∠a1fl. Since |xl| > |lu| and |fx| > |a1u|,
we have |fl| > |a1l|, which leads to ∠a1fl < 45◦. Therefore ∠eaf < 90◦.

The triangle bgh is congruent to aef .
Let us now consider the triangle abf . We have ∠abf < ∠vbj < 90◦, where

{v} = s′1 ∩ s2 ∩ s′2. Next, since ∠a1fl > 36◦ which has been proved, ∠fa1u < 54◦.
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Fig. 10

In the triangle aul, ∠ual + ∠ula = 36◦ and |au| = |kj|/2 > |uv|/2 = |ul|, so
∠ual < 18◦. Then ∠fab = ∠fau+ ∠uab = ∠fa1u+ ∠uab < 72◦.

Finally,

|a1f |2 =
(
1

2
+ cos 36◦

)2

+ (sin 36◦ + cos 18◦)2,

|bf |2 = (sin 18◦)2 + (sin 36◦ + cos 18◦)2

and
|a1b|2 = (1 + cos 36◦ + cos2 36◦)2 + (cos 36◦ sin 36◦)2.

Using (1) and the fact that cos 36◦ sin 36◦ = cos 18◦

2
, we get

|a1f |2 + |fb|2 − |a1b|2 =
1

4
> 0.

Hence ∠afb = ∠a1fb < 90◦.
The triangle abg is congruent to abf .

Fig. 11

Next consider the triangle dgh. Denote the midpoint of s′4 ∩ s5 by t and put
{r} = s′4 ∩ s′5 ∩ β. Rotate s′5 around rm to become coplanar with s′4 as shown in
Fig. 11, and let the new position of g in s′5 be g1. Obviously, ∠hgd < ∠hgm = 72◦

and ∠dhg < ∠thg = 90◦. The circle passing through h, m, and g1 has radius 1 and
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centre r. It has a tangent line at m perpendicular to rm. Since d lies outside this
circle, ∠hdg1 < ∠hmg1 = 72◦.

The triangle cef is congruent to dhg.
Now, take the triangle cdh into consideration. Let {z} = s′3 ∩ s4 ∩ s′4. The

bisector of the angle ohz cuts oz in z′, say. This bisector and zm are perpendicular
in Fig. 7. Since |zz′| < |zc| and |md| < |zc|, ∠hcd < 90◦. Clearly, ∠cdh < ∠tdh <
90◦. Finally, ∠chd = ∠cht + ∠thd. Since ∠cht + ∠ohc = 90◦, it suffices to show
∠thd < ∠cho. Indeed,

tan∠thd =
3
16

1
2
tan 72◦ =

3 sin 18◦

8 cos 18◦
< tan∠ohc =

5
16
sin 36◦

2 cos 36◦ − 5
16
cos 36◦

=
5 sin 36◦

27 cos 36◦

is equivalent to
40 sin 36◦ cos 18◦ > 81 sin 18◦ cos 36◦.

Using (1) again, this reduces to 40
√
5 > 81.

The triangle cde is congruent to cdh.

Fig. 12

Next, we turn our attention to the triangle bcf . In Fig. 7, rotate s4 around o
and s2 around j to become adjacent with s3 (see Fig. 12). Let v′ be the midpoint
of s3 ∩ s′3 and denote the new position of c by c2. The perpendicular from c2 to the
line fv′ meets it at p. We have

tan∠v′fc2 =
|c2p|

|fv′|+ |v′p|
=

1
2
+ 5

16
cos 36◦

sin 36◦ + cos 18◦ + 5
16
sin 36◦

.

Let q be the orthogonal projection of c on bj in the unfolding of Fig. 7. Observe
that ∠fcb = ∠fcq + ∠qcb where ∠fcq = ∠fc2p, and ∠fc2p + ∠v′fc2 = 90◦, so we
just need to show ∠qcb < ∠v′fc2. Indeed,

tan∠qcb = |bq|
|cq|

=
11
16
sin 36◦

(2 + 5
16
) cos 36◦

=
11 sin 36◦

37 cos 36◦
< tan∠vfc2 =

1
2
+ 5

16
cos 36◦

cos 18◦ + 21
16
sin 36◦

is equivalent to

11 sin 36◦ cos 18◦ +
231

16
sin2 36◦ <

37

2
cos 36◦ +

185

16
cos2 36◦.
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Using (1), this becomes 121
√
5+1155
128

< 777
√
5+1147
128

, which is correct.
Note that ∠cbf = ∠cbq+∠fbq, and ∠cbq+∠bcq = 90◦, so we just need to check

∠fbq < ∠bcq. Indeed,

tan∠fbq = sin 18◦

1
2
tan 72◦

=
2 sin2 18◦

cos 18◦
< tan∠qcb = 11 sin 36◦

37 cos 36◦
,

i.e.
74 sin2 18◦ cos 36◦ < 11 sin 36◦ cos 18◦,

which reduces to 15
√
5 < 37 by (1).

Denote the new position of b by b2. We know that

|b2f |2 = sin2 18◦ + (sin 36◦ + cos 18◦)2

and

|fc2|2 =
(
1

2
+

5

16
cos 36◦

)2

+

(
cos 18◦ +

21

16
sin 36◦

)2

.

If y is the orthogonal projection of b2 onto the line c2p, then

|b2c2|2 = |b2y|2 + |c2y|2

=
(
cos 36◦ sin 18◦ + 5

16
sin 36◦

)2
+
(
cos 36◦ sin 18◦ + 2 sin 18◦ + 1 + 5

16
cos 36◦

)2
.

By (1), we get
|b2f |2 + |c2f |2 − |b2c2|2 > 0.

Therefore ∠bfc = ∠b2fc2 < 90◦.
The triangle adg is congruent to bfc.
Finally, we will show the triangle bch to be acute. It is easily seen that ∠bhc <

∠y′hc∗ < 90◦, where c∗ is the mid-point of s′3 ∩ s4 and y′ the orthogonal projection
of c onto s′3 ∩ β. Next, ∠qcb < ∠jab, for tan∠jab = sin 36◦

3 cos 36◦
= 1

3
tan 36◦ and

tan∠qcb = 11
37
tan 36◦. So ∠cbh < ∠abg < 90◦. Since ∠bch = ∠bcy′ + ∠y′ch and

∠bcy′ + ∠bcq = 90◦, it suffices to show that ∠y′hc < ∠bcq. Indeed

tan∠y′ch =
1
2
− 5

16
cos 36◦

sin 36◦ + cos 18◦ − 5
16
sin 36◦

< tan∠bcq = 11 sin 36◦

37 cos 36◦
,

because

296 cos 36◦ − 185 cos2 36◦ < 176 sin 36◦ cos 18◦ + 121 sin2 36◦,

which reduces via (1) to 22
√
5 < 71.

The triangle ade is acute, being congruent to bch.

Third part. T is a balanced triangulation.

Since each triangle of this triangulation has in its interior at least one vertex of
the dodecahedron, by the Lemma, the triangulation is balanced. �
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The icosahedron

Also for the regular icosahedral surface we find the same best possible lower
bound, 12, for the size of a balanced triangulation.

Theorem 6. The regular icosahedral surface admits a balanced triangulation of
size 12, and this is best possible.

Proof. We begin with the construction from [10], reproduced for the reader’s
convenience in Fig. 13. In [10] it is shown that this is an acute triangulation T
of the icosahedral surface with 12 triangles, and that there exists none with fewer
triangles, which implies that for a minimal balanced triangulation T ∗ of the regular
icosahedral surface, we must have cardT ∗ ≥ 12.

We remark here that we cannot directly use the construction from Fig. 13, as
∠cdb′ < 30◦; for more details on this, see below.

First, we choose a planar embedding of the unfolding of the regular icosahedral
surface as shown in Fig. 13, and we shall work on this unfolding throughout this
proof. The point c is defined as orthogonal projection of a onto da′. This choice of
c is the only (but crucial) modification with respect to the construction from [10],
where c was at 1/4-th of the segment xy, closer to x.

Fig. 13: The acute triangulation of the regular icosahedral surface featured in [10]

Let us motivate the change in c’s position: the triangulation from [10] is not
balanced. Indeed, notice that in [10], if we choose x to be the origin and the abscise-

axis horizontal, then c =
(
− 1

16
,
√
3

16

)
, d =

(
−5

4
, 0
)
, b′ =

(
−1

4
,−

√
3
4

)
. Thus,

∠cdb′ = arccos

⟨(
19
16
,
√
3

16

)
,
(
1,

√
3
4

)⟩
∥∥∥(19

16
,
√
3

16

)∥∥∥ · ∥∥∥(1, √3
4

)∥∥∥ = 28.62...◦ < 30◦.

We will denote the point at c’s old position as c0. Let c′ (the old c′ will be called
c′′, see below) be the midpoint of the height at x of the triangle xa4y. Furthermore,
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Fig. 14: c0 (the old position of c), c′, and c+ form an equilateral triangle

Fig. 15: ac and da′ are perpendicular

let c+ be the midpoint of xy. Notice that ac passes through the midpoint c− of c+c′.
Notice also that da′ itself passes through c′. See Figs. 14 and 15.

With the new position of c, we will now prove that all angles of the 12 triangles
constituting T ∗, namely

aa′c, aa′c′′, acd, ac′′d, b′cd′, a′c′′d′, bb′d, bb′d′, b′cd, b′cd′, bc′′d, and bc′′d′,

are strictly larger than 30◦ and measure at most 90◦. Finally, we shift points gently
enough rendering all angles acute, while keeping every angle larger than 30◦.

Note that both c∗ and d∗ are defined originally [10] as ‘close’ to c′ and d′, respec-
tively. We will work in the following with the points c′′ (this is the old c′) and d′

directly, and then provide appropriate shifts.
To emphasize on the c′ versus c′′ notation: Let c′′ be now the midpoint of the

line-segment joining the midpoints of a1b2 and a1b3 (note that in [10] this was c′).
The triangles aa′c′′, ac′′d, bb′d, bc′′d, and bc′′d′ are balanced, the lower bound

being given by the Lemma, and the upper bound by [10].

b′cd
12 + (

√
3
2
· 3
2
)2 <

√
3
2
, whence d lies inside the circle a′b′a2 with centre at a. On

the greater arc a′b′ of this circle lies a2, which sees a′b′ under the angle 30◦. Hence
d sees a′b′ under a larger angle, i.e. ∠b′dc = ∠b′da′ > 30◦.

We have ∠b1b′d > ∠yb′c′, because tan∠b1b′d =
√
3/4 > 1/4

(3/4)·(
√
3/2)

= tan∠yb′c′.
Hence ∠db′c′ < ∠b1b′y = 90◦, and ∠db′c < ∠db′c′ < 90◦.
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The other angles of b′cd are easily treated:
∠b′cd < ∠b′qd = 90◦, where {q} = ab′ ∩ dx. Moreover, in b′cd, |b′c| < |b′a4| =

|b′b1| < |b′d|, whence ∠b′cd > ∠b′dc > 30◦.

b′d′c
We first show that ∠b′cd′ < 90◦. As c+ is the midpoint of the segment xy,

the line-segments b4x and d′c+ are parallel. Hence, if {z} = b′a4 ∩ c+d′, we have
∠b′cd′ < ∠b′zd′ = 90◦.

We show now that ∠b′d′c < 90◦. Since the line-segments b4x and d′c+ are parallel,
∠b4d′c+ = 30◦. We have

∠b′d′c = ∠b′d′b4 + ∠b4d′c = ∠a4d′b4 + ∠b4d′c = (60◦ − ∠b4a4d′) + (30◦ + ∠c+d−c).

Thus, it suffices to show that ∠c+d′c < ∠b4a4d′.
Recall that q is the midpoint of b′y. The centre u of the circle Γ through c+, c−,

q lies on the bisectors of c+c− and c+q. Hence, its radius is shorter than xc+, which
has length 1/4. The distance from d′ to u is far larger, whence d′ lies outside Γ and
∠c+d′c− < ∠c+qc−. Hence

∠c+d′c < ∠c+d′c− < ∠c+qc− = ∠c+yc− = ∠b4a4d′.
We prove now that ∠cb′d′ < 90◦. It is enough to show ∠b4b′d′ < ∠yb′c. Indeed,

∠b4b′d′ = ∠b4a4d′ = ∠c+yc−, tan∠b4b′d′ =
√
3/8 and tan∠yb′c− = (3/4)·(1/4)

(3/4)·(
√
3/2)

=
√
3/6. Hence ∠b4b′d′ < ∠yb′c− < ∠yb′c.
Via the Lemma, all angles of the triangle b′d′c measure more than 30◦ (as b4 is

in the interior of b′d′c).

d′ca′

First let us show that ∠d′ca′ > 30◦. Indeed, in the small triangle c0c′c+ (see
Fig. 14), the circle of diameter c′c− does not meet c+d′ (which is orthogonal on c0c′).
Since c lies on that circle, ∠d′ca′ > ∠d′c+a′ > ∠d′c+c′ = 30◦.

The angle a′d′c is acute because ∠a′d′c < ∠a′d′c+ and ∠a′d′c+ < 90◦ since d′c+

and a′b4 are orthogonal. Moreover, ∠d′a′c > ∠b4a′b′ = 30◦ and ∠d′a′c < ∠ba′a4 =
90◦.

bb′d′

We find the proofs for all required upper bounds of the angles occurring in
the triangle bb′d′ in [10]. For the lower bounds, we have ∠bb′d∗ > ∠bb′d3 = 30◦,
∠b′bd∗ > ∠b′bb4 = 60◦, and ∠bd∗b′ > ∠bb3b′ = 30◦.

a′c′′d′

The upper bounds for the angles ∠a′d′c′′ and ∠d′c′′a′ are supplied by [10], and
∠d′a′c′′ = 90◦ by construction. Furthermore, we have ∠d′c′′a′ > ∠a′a1d′ > ∠a′a1b4 =
30◦ and ∠a′d′c′′ > ∠a′b4c′′ > ∠a′b4a1 = 30◦.

acd
All angles of acd are greater than 30◦ due to the Lemma (a3 is in the interior of

the triangle acd). By construction, ∠dca = 90◦. We have ∠cad = ∠a3ad+∠a3ay +
∠yac < 90◦, as ∠a3ad = ∠a3ay = 30◦ and ∠yac < ∠yaa4 = 30◦. Lastly, obviously
we have ∠cda < ∠adx = 90◦.

aa′c
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In aa′c, all angles are greater than 30◦ due to the Lemma (which is applicable
as a4 lies in the interior of aa′c). We have ∠aa′c < 90◦, as ∠a4a′c < ∠a4a′b′ = 30◦,
and ∠caa′ < 90◦, as ∠caa4 < ∠yaa4 = 30◦. Finally, ∠a′ca = 90◦ by construction
(see Fig. 15).

It remains to shift a little some of the vertices of this triangulation in order to
render it acute. Concretely, c′′ will be slightly shifted towards a1, and c will be
shifted away from a. �

Unbounded geometry

As long as we remain confined to the Euclidean plane, the minimal size of bal-
anced triangulations – unlike acute triangulations – will always depend on the ratio
width/diameter.

Theorem 7. Let F be a family of polygons in R2 such that the infimum of all
ratios width/diameter vanishes. Then there is no number N for which every polygon
in F admits a balanced triangulation of size at most N .

Proof. Choose arbitrarily a natural number N . Let P ∈ F have ratio width/dia-
meter less than 1/(2N). Then its diameter is larger than 2Nw, where w is its
width.

Suppose that P admits a balanced triangulation of size N . Let Q ⊂ P be a
shortest path from a to b, where a, b ∈ P are such that |ab| is the diameter of P .
Let T0, ..., Tn be the ordered finite sequence of triangles met by Q from a ∈ T0 to
b ∈ Tn. Choose pi ∈ Q ∩ Ti (0 ≤ i ≤ n). Between pi−1 and pi there is some point
qi ∈ Q ∩ Ti−1 ∩ Ti (1 ≤ i ≤ n).

In every triangle of a balanced triangulation the ratio width/diameter is larger
than 2/

√
3 > 1/2. In Ti, |qiqi+1| < ∆i and wi < w, where ∆i and wi are the diameter

and width of Ti, respectively (1 ≤ i ≤ n− 1). Hence

|qiqi+1|
w

<
∆i

wi

< 2.

Adding the triangles T0 and Tn, and summing up,

|ab| ≤ |aq1|+

(
n−1∑
i=1

|qiqi+1|

)
+ |qnb| < 2(n+ 1)w ≤ 2Nw.

This contradiction ends the proof. �

On arbitrary surfaces the situation may change, as shown by the next example.

Example. Let Z be the surface of a right bounded circular cylinder (the bound-
ary of the cartesian product of a line-segment with a circular disc). While the in-
fimum of the ratio width/diameter vanishes for the family of all Z, we can always
find a balanced triangulation with 20 triangles.
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Indeed, let D1 and D2 be the two discs in Z. Take a pentagon Pi ⊂ Di concentric
with Di. Choose P1 and P2 such that the smallest angle between a side of P1 and a
side of P2 be of 36

◦. Let Pi = aibicidiei. Arrange that the orthogonal projection a′2 of
a2 onto D1 lies between a1 and b1 on the circle containing a1, b1, c1, d1, e1, a

′
2, b

′
2, c

′
2, d

′
2

and e′2. The isosceles geodesic triangle a1a2b1 has a total curvature of 36◦. If P1

and P2 are small, then ∠a1a2b1 is small (close to 0◦). If P1 and P2 are large (a1
comes close to the boundary of D1), then ∠a1a2b1 is large (close to 162◦). Thus,
there is a convenient position of P1 and P2 for which ∠a1a2b1 = 40◦. Then the other
two angles of the (geodesic) triangle a1a2b1 have together 174

◦, whence, the triangle
is balanced. There are 10 triangles congruent to a1a2b1, and another 10 trivially
obtained inside of P1 and P2. This triangulation is balanced.

Similar examples are right prisms over regular polygons with more than 4 sides,
and any convex surfaces close to these examples with respect to the Pompeiu-
Hausdorff distance.
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