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Locating Diametral Points

Jin-ichi Itoh, Costin Vı̂lcu, Liping Yuan , and Tudor Zamfirescu

Abstract. Let K be a convex body in R
d, with d = 2, 3. We determine

sharp sufficient conditions for a set E composed of 1, 2, or 3 points of
bdK, to contain at least one endpoint of a diameter of K. We extend
this also to convex surfaces, with their intrinsic metric. Our conditions
are upper bounds on the sum of the complete angles at the points in E.
We also show that such criteria do not exist for n ≥ 4 points.
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1. Introduction

The tangent cone at a point x in the boundary bdK of a convex body K can
be defined using only neighborhoods of x in bdK. So, one doesn’t normally
expect to get global information about K from the size of the tangent cones
at one, two or three points. Nevertheless, in some cases this is what happens!

A convex body K in R
d is a compact convex set with interior points; we

shall consider only the cases d = 2, 3. A convex surface in R
3 is the boundary

of a convex body in R
3.

Let S be a convex surface and x a point in S. Consider homothetic
dilations of S with the centre at x and coefficients of homothety tending to
infinity. The limit surface is called the tangent cone at x (see [1]), and is denoted
by Tx.

If K is a planar convex body, then the tangent cone at a boundary point
is an angle.

If K is a convex body in R
3, then the tangent cone at x ∈ bdK can be

unfolded in the plane, producing an angle the measure of which is the complete
angle at x, denoted by θx.
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Denote by ρ the intrinsic metric on the convex surface S (which is derived
from the ambient Euclidean distance).

We shall call diameter each line-segment in K, or arc in S, of length
equal to the extrinsic, respectively intrinsic, maximal distance between pairs
of points in K or in S.

An endpoint of some (intrinsic or extrinsic) diameter is called an (intrin-
sic, respectively extrinsic) diametral point.

In this paper, we provide criteria for finding extrinsic diametral points
in convex bodies K ⊂ R

d, d = 2, 3, and criteria for finding intrinsic diametral
points in convex surfaces S = bdK ⊂ R

3. Our criteria consist of upper bounds
on the sum of the complete angles at 1, 2, or 3 points.

We also show that such criteria do not exist for n ≥ 4 points.
Related to our results in Sect. 3 is the following one, obtained by Itoh

and Vı̂lcu [4]. Each point y in a convex surface S with complete angle θy ≤ π
is a farthest point on S, i.e., y is at maximal intrinsic distance from some point
in S.

Passing from planar convex bodies to convex surfaces is not always ob-
vious. For example, while the diameter of a convex polygon P (in the plane,
diameter means extrinsic diameter) with n vertices can be computed in time
O(n) [8], the intrinsic diameter of a convex polyhedral surface in R

3 with n
vertices can be computed in time O(n8 log n) [2].

Also, it is well-known that diameters of convex polygons must join ver-
tices, but this is not always true for geodesic diameters of convex polyhedral
surfaces [7]. The result in [7] that the diameter is generically realized by five
geodesic segments (see the definition below) was later proved by Zalgaller [10].

There is a nice connection between the lengths of intrinsic and extrinsic
diameters of a convex surface, considered by several authors, see [5,6,11]: for
any convex surface S, the former is less than or equal to π/2 times the latter,
and equals it if and only if S is a surface of revolution of constant width.

Our results provide another connection. The endpoints of extrinsic and
intrinsic diameters of convex bodies and surfaces are in general distinct; yet,
in some cases, they can be found in the same set, see the remarks at the end
of the paper.

A pair of points sees a line-segment under the angle α if the sum of the
two angles under which they see the line-segment equals α.

Let σ be an extrinsic diameter of the convex body K. A pair of points
u, v ∈ K\σ is said to be a σ-separated pair if the line-segment uv meets σ [12].

A geodesic segment on the convex surface S is an arc (path) on S realizing
the intrinsic distance between its endpoints. If σ is an intrinsic diameter, i.e.
a longest geodesic segment, of S, then a pair of points u, v ∈ S\σ is said to be
σ-separated if some geodesic segment from u to v meets σ [12].

For M ⊂ IRd, we denote by M its affine hull, by intM the relative interior
of M (i.e., in the topology of M) and by bdM the relative boundary of M .
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For distinct x, y ∈ IRd, let xy be the line-segment from x to y; thus, xy
is the line through x, y. We put x1 . . . xn = conv{x1, . . . , xn}.

2. Planar Convex Bodies

Let K be a planar convex body and x a boundary point of K.
We denote by X the angle of bdK at x towards K (so X ≤ π), and keep

this habit for any boundary point; so, Y is the angle at y, and so on.
We shall repeatedly use the next result.

Lemma 2.1. (Zamfirescu [12]) For any diameter uv of a planar convex body,
every uv-separated pair sees uv under an angle not less than 5π/6.

Lemma 2.2. Assume in the convex quadrilateral Q = xyzw we have X+Y ≤ π.
Then at least one of the vertices x, y is a diametral point of Q.

Proof. Assume x, y are not diametral points of Q. Then the side zw is longer
than the diagonals xz and yw, whence W < ∠wxz < X and Z < ∠wyz < Y .
It follows that

2π = X + Y + Z + W < 2(X + Y ) ≤ 2π,

absurd. �

Theorem 2.3. Let K be a planar convex body.
(i) Any point x ∈ bdK with X ≤ π/3 is a diametral point of K. If K has

two such points, they determine a diameter of K.
(ii) Among any two points x, y ∈ bdK with X + Y ≤ 5π/6 there exists a

diametral point of K.
(iii) Among any three points x, y, z ∈ bdK with X +Y +Z ≤ 4π/3 there exists

a diametral point of K.

Proof. (i) Assume the existence of a diameter yz of K, with y, z different from
x. It follows that in the triangle xyz the angle at x is not smaller than the
other two, whence the triangle is equilateral. Hence, xy and xz are diameters,
too. Thus, (i) is proven.

For the rest of the proof [parts (ii) and (iii)], assume the conclusion does
not hold, and let uv be a diameter of K.

(ii) If x and y are not uv-separated, then we have the quadrilateral xyvu.
By Lemma 2.2, X +Y ≥ ∠uxy +∠xyv > π, which contradicts our hypothesis.

So x and y are uv-separated; then, by Lemma 2.1, X + Y ≥ 5π/6. This
and the hypothesis imply X + Y = 5π/6.

Assume that K is not the quadrilateral xuyv. Then the sum of the angles
of xuyv at x and y is less than 5π/6, in contradiction with Lemma 2.1, applied
to xuyv.

So K is the quadrilateral xuyv. Slightly moving x out of K along the
line xy would provide quadrilaterals K ′ = x′uyv with x′, y uv-separated and
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X ′ + Y < 5π/6. By Lemma 2.1, uv is no longer a diameter of K ′, so x′ is a
diametral point of K ′. Now, let x′ converge back towards x. Then K ′ → K,
which implies that x is a diametral point of K, contradicting our assumption.

(iii) Assume first that x, y, z are all on one side of uv. Lemma 2.2 gives

X + Y > π, X + Z > π, Y + Z > π,

so X + Y + Z > 3π/2, contradicting X + Y + Z ≤ 4π/3.
Hence, we can assume that x, y are on one side of uv and z on the other

side. The previous case (ii) and Lemma 2.2 imply

X + Y > π, X + Z > 5π/6, Y + Z > 5π/6.

Summing up, we get X+Y +Z > 4π/3, which contradicts the hypothesis.
�

All bounds in Theorem 2.3 are sharp, as one can see from the following
examples.

(i) Consider an isosceles triangle Δ = xyz with ‖x − y‖ = ‖x − z‖ and
X = π/3 + ε, with ε arbitrarily small. Clearly, x is not a diametral point
of Δ.
(ii) Consider a convex quadrilateral Q′ = x′uy′v with ‖x′ − v‖ = ‖x′ −
y′‖ = ‖y′ − v‖ = ‖u − v‖ and ‖u − x′‖ = ‖u − y′‖, see Fig. 1a. Then, in
Q′, X ′ = Y ′ = U/2 = 5π/12.
Let x and y be interior points of Q′, on the line x′y′, arbitrarily close to
x′ and y′, respectively. Then, in Q = xuyv, we have X + Y = 5π/6 + ε,
with ε arbitrarily small; moreover, uv is the unique diameter of Q.
(iii) Consider an equilateral triangle Δ = uvz′ and let m be the midpoint
of uv, see Fig. 1b. On the circle of diameter uv, take points x, y separated

(a) (b)

Figure 1. (ii) and (iii)
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from z′ by uv, such that xy‖uv and x is arbitrarily close to u. Then, in
xuz′vy, X = Y = π/2 + ε, with ε arbitrarily small.
Take a point z on z′m, such that ‖z − z′‖ equals the distance between

the parallel lines xy and uv. Of course, in xuzvy, Z = ∠uzv = π/3 + ε′, with
ε′ > 0.

Then X + Y + Z = 4π/3 + 2ε + ε′, and 2ε + ε′ converges to 0 as x → u.
Moreover, uv is the unique diameter of xyvzu.

Corollary 2.4. If the planar convex body K, symmetric about 0, has a boundary
point x with X ≤ 5π/12, then x(−x) is a diameter of K.

Proof. The sum of the angles at x and −x is less than or equal to 5π/6. Now,
by Theorem 2.3 (ii), x or x′ is a diametral point of K. But, by Theorem 4 in
[12], the endpoints of each diameter of K are symmetric with respect to 0. So,
x(−x) is a diameter of K. �

The above approach cannot be extended to n ≥ 4 points.

Remark 2.5. There is no non-trivial constant c(n) depending only on n ≥ 4, to
guarantee that, for any planar convex body K, among any n points x1, . . . , xn

in bdK with
∑n

i=1 Xi ≤ c(n) there exists a diametral point of K.

Proof. Suppose that such a constant c(n) does exist.
Notice that any points x1, . . . , xn in the boundary of any planar convex

body K, form a convex n-gon; hence
∑n

i=1 Xi ≥ (n − 2)π, and therefore
c(n) ≥ (n − 2)π.

Next we show that, for any ε > 0, there exist a planar polygon P and n
vertices of P with

∑n
i=1 Xi < (n − 2)π + ε, none of which is a diametral point

of P . This implies c(n) ≤ (n − 2)π, hence necessarily c(n) = (n − 2)π. In this
case, K is precisely the convex n-gon with vertices x1, . . . , xn and, trivially, at
least two of them are diametral points.

Let uv be a diameter of a circle C. Consider n ≥ 4 points x1, . . . , xn on
C, at least two of them on each side of the line uv, such that no two of them
are diametrally opposite. Let x1, . . . , xk be on one side and xk+1, . . . , xn on
the other side of uv.

Of course, in the n-gon x1 . . . xn, we have
∑n

i=1 ∠xixi+1xi+2 = (n − 2)π,
where indices i are taken modulo n. Let P denote the (n + 2)-gon uvx1 . . . xn.
By taking x1, xn close to u, and xk, xk+1 close to v, we get

∑n
i=1 Xi < (n −

2)π + ε, with ε arbitrarily small. But P has the unique diameter uv. �

3. Convex Bodies in R
3

We obtain here results similar to Theorem 2.3, locating diametral points of
convex bodies in R

3.
We denote by θx the complete angle at the point x in bdK, and by ωx

the curvature at x; hence, ωx = 2π − θx.
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Theorem 3.1. Let K be a convex body in R
3.

(i) Any point x ∈ bdK with θx ≤ 2π/3 is a diametral point of K. If K has
two such points, they determine a diameter of K.

(ii) Among any two points x, y ∈ bdK with θx + θy ≤ 3π/2 there exists a
diametral point of K.

(iii) Among any three points x, y, z ∈ bdK with θx + θy + θz ≤ 9π/4 there
exists a diametral point of K.

Proof. (i) Assume there exists K ⊂ R
3 and a point x ∈ bdK with θx ≤ 2π/3,

which is not diametral.
Let uv be a diameter of K. In the planar convex body K ∩xuv, the angle

X at x must be at most θx/2 ≤ π/3. By Theorem 2.4 (i), X > π/3, and a
contradiction is obtained.

(ii) Assume there exists K ⊂ R
3 and points x, y on bdK with θx + θy ≤

3π/2, none of which is a diametral point of K.
Let uv be a diameter of K. We consider the (possibly degenerate) tetra-

hedron T = uvxy.
We unfold xuv ∪ yuv on a plane, with x, y coming on different sides

of uv. The resulting quadrilateral Q has angles X, Y , U , V at the points
corresponding to x, y, u, v, respectively. Now, unfold uxy ∪ vxy on a plane,
with u, v coming on different sides of xy. The resulting quadrilateral Q′ has
angles X ′, Y ′, U ′, V ′ at the points corresponding to x, y, u, v. In Q′, the
length of the diagonal corresponding to uv equals at least ‖u − v‖ > ‖x − y‖.
By Theorem 2.3 (ii), X ′ + Y ′ > 5π/6, whence U ′ + V ′ < 2π − (5π/6) = 7π/6.

We have

X + X ′ + Y + Y ′ + U + U ′ + V + V ′ = 4π

in bdT .
Since X +X ′+Y +Y ′ ≤ θx+θy ≤ 3π/2, we have U +U ′+V +V ′ ≥ 5π/2.

This, together with the inequality U ′ + V ′ < 7π/6 obtained above, yields
U + V > 4π/3. This implies X + Y < 2π/3. Hence, X < π/3 or Y < π/3.
Thus, uv cannot be a longest side, in xuv or in yuv, and a contradiction is
obtained.

(iii) Suppose θx + θy + θz ≤ 9π/4, but there is no diametral point among
x, y, z. Then, by (ii), θx+θy > 3π/2, θy +θz > 3π/2, θz +θx > 3π/2. It follows
that 2θx + 2θy + 2θz > 9π/2, in contradiction with our hypothesis. �

Theorem 3.2. If the convex body K, symmetric with respect to 0, has a bound-
ary point x with θx ≤ 5π/6, then x(−x) is a diameter of K.

Proof. Obviously, θx = θ−x. Assume that x(−x) is not a diameter. Then con-
sider a diameter, which, by Theorem 4 in [12], must join diametrally opposite
points. Let y(−y) be that diameter. In the parallelogram xy(−x)(−y), the
diagonal y(−y) is the unique diameter of it, so x and −x are not diametral
points. By Theorem 2.3 (ii), ∠yx(−y) + ∠y(−x)(−y) > 5π/6.
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But ∠yx(−y) + ∠y(−x)(−y) ≤ (θx/2) + (θ−x/2) ≤ 5π/6, and we got a
contradiction. �

4. Convex Surfaces

In this section we investigate intrinsic diameters on convex surfaces. We obtain
results similar to those in Sects. 2 and 3. Roughly speaking, as soon as the
curvature concentrated at some points is large enough, they become eligible
as diametral points.

Lemma 4.1. [The Pizzetti–Alexandrov comparison theorem ([1], p. 132)] The
angles of any geodesic triangle in a convex surface are not smaller than the
corresponding angles of the Euclidean triangle with the same side-lengths.

Lemma 4.2 follows from Alexandrov’s Konvexitätsbedingung ([1], p. 130).

Lemma 4.2. Consider a convex surface S. Let abc ⊂ S and a′b′c′ ⊂ IR2 be two
triangles as in Lemma 4.1. If d ∈ bc, d′ ∈ b′c′ and ρ(b, d) = ‖b′ − d′‖, then
ρ(a, d) ≥ ‖a′ − d′‖.

The following statement is well-known. For a thorough introduction to
the theory of critical points for distance functions, see [3].

Lemma 4.3. Each endpoint of a diameter on a convex surface is critical with
respect to the other. Consequently, each digon determined by two diameters,
with no third diameter passing through its interior, has both endpoint angles
at most π.

Theorem 4.4. Let S be a convex surface.
(i) Any point x ∈ S with θx ≤ 2π/3 is a diametral point of S. If S has two

such points, they determine a diameter of S.
(ii) Among any two points x, y ∈ S with θx +θy ≤ 5π/3 there exists a diame-

tral point of S.
(iii) Among any three points x, y, z ∈ S with θx + θy + θz ≤ 5π/2 there exists

a diametral point of S.

Proof. (i) Assume a point x on S verifies θx ≤ 2π/3 and is not a diametral
point of S. Let yz be a diameter of S. There are two geodesic triangles with
vertices at x, y, z on S, at least one of which has an angle less than or equal
to π/3 at x. A contradiction now follows from the assumption that x is not a
diametral point, Lemma 4.1 and Theorem 2.3 (i).

Assume now that there are x, y ∈ S with θx, θy ≤ 2π/3, and take z ∈
S\{x, y}. Join x, y and z by geodesic segments to form two triangles on S. At
least one of them has its angle at x less than or equal to π/3, so yz is not a
diameter of S or xy is a diameter, by the preceding argument. Analogously,
xz is not a diameter of S or xy is a diameter.
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Figure 2. The points x, y are not inside one digon

Since this holds for any z ∈ S and x, y are diametral points of S, xy must
be a diameter of S.

For the rest of the proof, assume the conclusions are false and let uv be
a diameter of S.

The geodesic segments joining u and v determine on S one or several
digons.

(ii) The points x, y are not inside one digon, say D, determined by ge-
odesic segments from u to v, see Fig. 2. Indeed, by Lemma 4.3, the total
curvature of the interior of D is at most 2π, hence

2π ≥ ωx + ωy = 4π − (θx + θy) ≥ 7
3
π > 2π,

absurd.
Therefore, the points x, y are in distinct digons, and so x and y are uv-

separated, for some diameter uv. Let {w} = uv ∩ xy. Consider the points
x′, y′, u′, v′, w′ in IR2 such that w′ ∈ u′v′, x′y′ ∩ u′v′ 
= ∅, ‖u′ − v′‖ = ρ(u, v),
‖u′ − x′‖ = ρ(u, x), ‖u′ − y′‖ = ρ(u, y), ‖v′ − x′‖ = ρ(v, x), ‖v′ − y′‖ = ρ(v, y),
‖u′−w′‖ = ρ(u,w). By Lemma 4.2, ‖x′−w′‖ ≤ ρ(x,w) and ‖y′−w′‖ ≤ ρ(y, w).

By Lemma 4.1, ∠uxv ≥ ∠u′x′v′ and ∠uyv ≥ ∠u′y′v′.
But

‖x′ − y′‖ ≤ ‖x′ − w′‖ + ‖w′ − y′‖ ≤ ρ(x,w) + ρ(w, y)
= ρ(x, y) < ρ(u, v) = ‖u′ − v′‖.

By Theorem 2.3 (ii),

∠uxv + ∠uyv ≥ ∠u′x′v′ + ∠u′y′v′ > 5π/6.

But

∠uxv + ∠uyv ≤ (θx/2) + (θy/2) ≤ 5π/6,

and a contradiction is obtained.
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(iii) Notice that the points x, y, z cannot be all in the same digon deter-
mined by geodesic segments from u to v. Indeed, for three points x, y, z in the
same digon, we have, by Lemma 4.3, ωx+ωy+ωz ≤ 2π, hence θx+θy+θz ≥ 4π,
contradicting the hypothesis.

Assume first that x, y are in one digon, and z in another one. Then, by
(ii), θx + θz > 5π/3 and θy + θz > 5π/3. At (ii) we saw that θx + θy ≥ 2π.
Summing up these inequalities, we get θx+θy +θz > 8π/3 > 5π/2, impossible.

Hence, x, y, z are in different digons. By (ii), we have θx + θy > 5π/3,
θy+θz > 5π/3, and θx+θz > 5π/3, hence θx+θy+θz > 5π/2, in contradiction
with the hypothesis. �

Corollary 4.5. If the convex surface S, symmetric about 0, has a point x with
θx ≤ 5π/6, then there exists a diameter of S from x to −x.

Proof. Since θx = θ−x, we have θx+θ−x ≤ 5π/3. Now, Theorem 4.4 (ii) implies
that x or x′ is a diametral point of S. By Proposition 6 in [9], each diameter
of S is realized between diametrally opposite points. �

The endpoints of extrinsic and intrinsic diameters of convex bodies or
surfaces are in general distinct.

The hypotheses of Corollaries 3.2 and 4.5, are the same. Also, those of
Theorems 4.4 and 3.1 might be simultaneously verified. In these cases, end-
points of both extrinsic and intrinsic diameters of S = bdK can be found in
the same subset of S composed by 1, 2, or 3 points.

Conjecture. In Theorem 3.1 (ii), the inequality θx + θy ≤ 5π/3 suffices to
guarantee the existence of a diametral point in {x, y}.

Open questions. Are the bounds 9π/4 in Theorem 3.1 (iii) and 5π/2 in Theo-
rem 4.4 (iii) optimal?
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