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For any compact Riemannian surface S and any point y in S, 
Q−1

y denotes the set of all points in S for which y is a critical 
point, and |Q−1

y | its cardinality. We proved [2] together with 
Imre Bárány that |Q−1

y | ≥ 1, and that equality for all y ∈ S
characterizes the surfaces homeomorphic to the sphere. Here 
we show, for any orientable surface S and any point y ∈ S, 
the following two main results. There exists an open and dense 
set of Riemannian metrics g on S for which y is critical with 
respect to an odd number of points in S, and this is sharp. 
If S is the torus then |Q−1

y | ≤ 5, and if S has genus g ≥ 2
then |Q−1

y | ≤ 8g − 5. Properties involving points at globally 
maximal distance on S are eventually presented.
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1. Introduction

In this paper, by surface we always mean a 2-dimensional compact Riemannian man-
ifold, unless explicitly stated otherwise.

For any surface S, denote by ρ its (intrinsic) metric, and by ρx the distance function
from x ∈ S, given by ρx(y) = ρ(x, y). A segment between x and y in S is a path from 
x to y of length ρ(x, y). A point y ∈ S is called critical with respect to ρx (or to x), if 
for any tangent direction τ of S at y there exists a segment from y to x whose tangent 
direction at y makes a non-obtuse angle with τ .

For an excellent survey of critical point theory for distance functions see [8].
For any point x in S, denote by Qx the set of all critical points with respect to x, and 

by Q the critical point mapping associating to any point x in S the set Qx. Similarly, 
Mx is the set of all relative maxima of ρx, Fx the set of all farthest points from x
(i.e., absolute maxima of ρx) and M , respectively F , are the corresponding set-valued 
mappings.

Properties of the mappings Q, M and F on Alexandrov spaces have previously been 
obtained in [9] and [19]. See the survey [17] for various results concerning the mapping 
F on convex surfaces.

We proved in [2], together with Imre Bárány, that the set Q−1
y of all points with 

respect to which y is critical is never empty. It is also shown in [2] that Q−1
y is single-

valued for all y ∈ S if and only if the genus of S is 0. We continue this study in the 
following.

Let G denote the space of all Riemannian metrics on the surface S; it is viewed as the 
space of sections of the bundle of positive definite symmetric matrices over S, endowed 
with the C∞ Whitney topology [4].

In a topological space T , a property P is called generic if the set of all elements 
in T without property P is of first Baire category. We obtain an even stronger sense of 
genericity if “nowhere density” replaces “first Baire category”, and this is the meaning we 
use in this paper. Several results and open questions about generic Riemannian metrics 
are presented in [3], see also the references therein. We mention next only one.

M.A. Buchner [4] showed that, on a surface, the set of metrics which are cut locus 
stable is open and dense in G; moreover, for any such metric, every ramification point of 
the cut locus has degree three. We get, and later use, a slightly improved result, see §2
for the definitions and Theorem 4.1 for the precise statement.

Our Theorem 4.2 contributes to this topic, too. It states that any point y in any 
orientable surface S is critical with respect to an odd number of points in S, for a 
generic metric on S. This result is sharp, as Theorem 5.2 shows. Theorem 4.2 is also 
useful for the proof of our Theorem 6.1.

Theorem 6.1 provides, for orientable Riemannian surfaces, an upper bound for |Q−1
y |. 

It is based on its counter-part for Alexandrov surfaces, Theorem 3.2, which strengthens 
Theorem 2 in [24]. We apply Theorem 6.1 to estimate the cardinality of diametrally 



J. Itoh et al. / Advances in Mathematics 369 (2020) 107187 3
opposite sets on S (Corollary 7.2). Thus, our results also contribute to a description of 
farthest points H. Steinhaus had asked for (see §A35 in [6]).

The case of points y in orientable Alexandrov surfaces, which are common maxima 
of several distance functions, is treated in [18]; for an introduction to Alexandrov spaces 
with curvature bounded below, see [5]. See also [13], [14], for results in a direction some-
what similar to ours.

2. Preliminaries

The length (1-dimensional Hausdorff measure) of the set A is denoted by λ(A).
Let S be a surface. By Tx we denote the circle of all tangent directions at x ∈ S; we 

have λ(Tx) = 2π.
Let x ∈ S. For every τ ∈ Tx, a point c(τ) called cut point is associated, defined by 

the requirement that the arc xc(τ) ⊂ Γ is a segment which cannot be extended further 
(as a segment) beyond c(τ); here, Γ is the geodesic through x of tangent direction τ at 
x. The set of all these cut points is the cut locus C(x) of the point x. The cut locus was 
introduced by H. Poincaré in 1905 [12] and became, since then, an important tool in 
Global Riemannian Geometry, see for example [11], [15], or [16].

It is known that C(x), if it is not a single point, is a local tree (i.e., each of its points 
z has a neighbourhood V in S such that the component Kz(V ) of z in C(x) ∩ V is a 
tree), even a tree if S is homeomorphic to the sphere. If S is not a topological sphere, 
the cyclic part of C(x) is the minimal (with respect to inclusion) subset Ccp(x) of C(x), 
whose removal from S produces a topological (open) disk. It is easily seen that Ccp(x)
is a local tree with finitely many ramification points and no extremities (see [10]).

Recall that a tree is a set T any two points of which can be joined by a unique Jordan 
arc included in T . The degree of a point y of a local tree is the number of components 
of Ky(V ) \ {y} if the neighbourhood V of y is chosen such that Ky(V ) is a tree. A point 
y of the local tree T is called an extremity of T if it has degree 1, and a ramification 
point of T if it has degree at least 3. A local tree is finite if it has finitely many points 
of degree different from 2. An internal edge of the finite tree T is a Jordan arc in T in 
which the endpoints and no other points are ramification points of T .

All these notions admit obvious extensions to Alexandrov surfaces. The main result in 
[1], Theorem 4 in [23] and Theorem 1 in [21] yield the existence of Alexandrov surfaces 
S on which the set of all extremities of any cut locus is residual in S.

It is, however, known that C(x) has an at most countable set C3(x) of ramification 
points [16]. Let Ccp

3 (x) be the set of points of degree at least 3 in the finite local tree 
Ccp(x). We stress that the degree is not taken in C(x), but in Ccp(x). It is known that 
Ccp

3 (x) is a finite set [10].
Let S be a surface and x ∈ Q−1

y ; put i(x) = 2 if there are precisely 2 segments from 
y to x, and i(x) = 3 if there are at least 3 segments from y to x. For j = 2, 3, we say 
that the point x is of type j if i(x) = j. Put �jy = |{x ∈ Q−1

y : i(x) = j}|; clearly, 
|Q−1

y | = �2y + �3y.
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In [2] the authors proved together with Imre Bárány, in the framework of Alexandrov 
surfaces, the following three results. (See [7] for a variational proof of the first one, valid 
for finite dimensional Riemannian manifolds.)

Lemma 2.1. Every point on every surface is critical with respect to some point of the 
surface.

Lemma 2.2. Assume S is a Riemannian surface, y a point in S, and x ∈ Q−1
y is such 

that the union U of two segments from x to y disconnects S. If a component S′ of S \U
meets no segment from x to y then Q−1

y ∩ S′ = ∅. In particular, if the union of any two 
segments from x to y disconnects S then Q−1

y = {x}.

Lemma 2.2 shows, in particular, that on many surfaces there are points which are 
critical with respect to precisely one other point.

Lemma 2.3. An orientable surface S is homeomorphic to the sphere S2 if and only if each 
point in S is critical with respect to precisely one other point of S.

3. A general result

We prove in this section a result for arbitrary Alexandrov surfaces, which in particular 
holds for (Riemannian) surfaces. Before giving it, we recall a result in graph theory. All 
graphs we consider in the following are finite, connected, and may have loops and multiple 
edges.

Lemma 3.1. Let G be a connected graph with m edges, n vertices and q generating cycles. 
Then
i) m − n + 1 = q;
ii) m ≤ 3(q − 1) and n ≤ 2(q − 1), with equality if and only if G is cubic.

Proof. The equality (i) is well known. For the inequalities (ii), fix q. It follows from the 
first part that m and n are maximal if and only if G is cubic. In this case we have 
3n = 2m, and we obtain n = 2(q − 1), m = 3(q − 1). �

Recall that a point y in an Alexandrov surface is called smooth if λ(Ty) = 2π, where 
Ty is the space of tangent directions at y (as defined, for example, in [5]).

For the simplicity of our exposition, we see every graph G as a 1-dimensional simplicial 
complex.

Theorem 3.2. Let y be a smooth point on an orientable Alexandrov surface S of genus g.
If g = 0, then |Q−1

y | = 1.
If g ≥ 1, then �2y ≤ 6g − 3 and �3y ≤ 4g − 2; this yields |Q−1

y | ≤ 10g − 5.
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For any point y on the standard projective plane, Q−1
y = Qy is a circle, so one cannot 

drop the orientability condition in Theorem 3.2.
The restriction to smooth points in Theorem 3.2 is essential, too. Indeed, for any 

surface S with a conical point y, if λ(Ty) ≤ π then Q−1
y = S \{y}. See [18] for properties 

of the sets M−1
y and Q−1

y in case π ≤ λ(Ty) < 2π.

Proof. The case g = 0 is covered by Lemma 2.3, so we may assume g ≥ 1. And in virtue 
of Lemma 2.2, we may consider only points y ∈ S with Q−1

y ⊂ Ccp(y).
Assume for simplicity of the exposition that C(y) = Ccp(y).
Consider Ccp(y) = (V, E) as a graph, with V = Ccp

3 (y) and E the set of components 
of Ccp(y) \ V . Call the elements of V vertices, and the elements of E edges.

We claim that the interior of each edge I of Ccp(y) contains at most one point x ∈ Q−1
y . 

To see this, assume there exists some point x ∈ Q−1
y interior to I. Then there are two 

segments from x to y, making at y the angle π. Since y is smooth, λ(Ty) = 2π and 
therefore the two images x′, x′′ of x on Ty are diametrally opposite. Let x∗ �= x be another 
point in the interior of I, with images x′

∗, x
′′
∗ on Ty. Since S is orientable, the order on 

Ty is either x′, x′
∗, x

′′
∗ , x

′′ or x′, x′′
∗ , x

′
∗, x

′′. In both cases x′
∗, x

′′
∗ cannot be diametrally 

opposite, hence x∗ /∈ Q−1
y .

Then, since Ccp(y) has 2g generating cycles, Lemma 3.1 gives �2y ≤ 6g − 3 and �3y ≤
4g − 2, which together imply |Q−1

y | = �2y + �3y ≤ 10g − 5. �
Notice that this upper bound on |Q−1

y | is only imposed by the topology of S. We shall 
refine it in Section 6 by local geometrical considerations.

4. Two generic results

For the proof of Theorem 4.2, we shall make use of the main result in [4], that we 
complete in the following with a new statement of independent interest. Notice that this 
result doesn’t require orientability of the surface. See [4] for the definition of cut locus 
stable metrics.

Theorem 4.1. Let S be a surface and y a point in S.
The set Cy of cut locus (with respect with y) stable metrics on S is open and dense 

in G. For any g in Cy, every ramification point of the cut locus C(y) with respect to g is 
joined to y by precisely three segments.

There exists a set C̃y of cut locus (with respect with y) stable metrics on S, open and 
dense in G, such that for any g̃ in C̃y, every ramification point x of the cyclic part of 
the cut locus C(y) with respect to g is joined to y by precisely three segments, no two of 
them of opposite tangent directions at x or at y.

Proof. The first part of the theorem is proved by Buchner in [4].
Consider now a metric g in Cy and a point x ∈ Ccp

3 (y), hence it is joined to y by 
precisely three segments, say γ1, γ2, γ3. Assume that the tangent directions of γ1 and 
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γ2 at x are opposite, so they form a geodesic loop. Since the limit of geodesic loops is a 
geodesic loop, the set of all such metrics is closed in G, and its complement C̃y

x is open.
We prove now the density of C̃y

x in G. In order to do it, we approximate g in two steps.
First we “put a bump” to slightly cover γ1, assymetrically with respect to the left and 

right parts of γ1. Consequently, in a neighbourhood of the image set of γ1 (on S), there 
is a unique shortest path γ̃1 from x to y with respect to the new metric g′; γ̃1 is a little 
longer than γ1 and, more importantly, it makes no angle of π with γ2 or γ3.

Second, we put bumps on γ2 and γ3, such that the obtained metric g′′ has the following 
properties. In respective neighbourhoods of the image sets of γ2 and γ3 (on S), there 
are unique shortest paths γ̃2, γ̃3 from x to y, with respect to g′′. They have the same 
respective tangent directions at x as γ2 and γ3 and, moreover, they have the same length 
as γ̃1.

One can proceed similarly for the tangent directions at y.
Since Ccp

3 (x) is a finite set, after finitely many such procedures we get a metric g̃ ∈ C̃y

approximating g, with the desired properties. �
Theorem 4.2. If S is an orientable surface and y a point in S then, for a generic Rie-
mannian metric on S, y is critical with respect to an odd number of points in S.

During our proof we shall refer to the proof of Theorem 1 in [2].

Proof. Consider a metric on S as in Theorem 4.1. We will identify here Ty with a 
Euclidean circle of centre 0 and length λ(Ty) = 2π.

If S is homeomorphic to the sphere then the statement follows from Lemma 2.3. 
Assume this is not the case.

A finite number of cycles were defined in [2] to prove Lemma 2.1, by joining points 
in Ty corresponding to the vertices in Ccp

3 (y) by line segments or arcs in Ty. Next we 
indicate a geometrical interpretation (i.e., an equivalent definition) for some of those 
cycles, useful for our purpose.

The injectivity radius inj(S) is positive. Therefore, for any ε > 0 sufficiently small, 
there is a natural identification Φ of Ty to the boundary bdNε of the ε-neighbourhood Nε

of C(y) in S. Choose a point x ∈ Ccp
3 (y). For each segment γx from x to y, take the (first) 

point zγx
in γx ∩ bdNε. The set of all these points zγx

has degx = |c−1(x)| components, 
each of which is a point or an arc. (Recall that c is the restriction of the exponential map 
to Ty.) Join with segments the extremities of consecutive – with respect to some circular 
order – components. The simple closed curve Cx thus constructed corresponds, by the 
use of Φ−1, to the cycle Ci determined by c−1(x), and is called a vertex-cycle. Moreover, 
the boundary of every component of Nε \

⋃
x∈Ccp

3 (x) intCx yields, again by the use of 
Φ−1, a cycle Ci determined by consecutive points α, β in c−1 (Ccp

3 (y)), and is called an 
edge-cycle.

Let C1, ..., Cn be all these cycles.
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If 0 ∈ ∪n
j=1Cj then, for some x ∈ Ccp

3 (y), there are two segments of diametrally 
opposite tangent directions in Ty, see [2].

If 0 /∈ ∪n
j=1Cj consider, as in [2], the winding number w(Cj) = w(0, Cj) of every cycle 

Cj with respect to 0. We have

n∑
i=1

w (Ci) = w

(
n∑

i=1
Ci

)
= w (Ty) = 1 (mod 2),

because each edge not in Ty is used exactly twice. This shows that w(Ci) �= 0 for some 
cycle Ci.

If this cycle Ci is an edge-cycle then, because S is orientable, a semi-continuity ar-
gument shows that its corresponding edge in Ccp

3 (y) contains at least one point in Q−1
y , 

see [2] for details.
If Ci is a vertex-cycle, w(Ci) �= 0 means that 0 is surrounded by Ci, which is impossible 

if 0 /∈ convCi. By construction, convCi = convc−1(x) for some x ∈ Ccp
3 (y).

By Theorem 4.1, all the vertices of C(y) have degree three. This and the orientability of 
S show now that all cycles Ci considered above are simple closed curves, hence w(Ci) ∈
{0, ±1}. Therefore, because 

∑n
i=1 w(Ci) = 1 (mod 2), the number of cycles Ci with 

w(Ci) �= 0 is odd. Each such Ci intersects Q−1
y .

We claim that, if non-zero, |Ci ∩Q−1
y | = 1. This is clear for the cycles determined by 

vertices of Ccp
3 (y), because these cycles have precisely three sides. Consider now a cycle 

Ci determined by an edge e of Ccp
3 (y). Then, because S is orientable, Ci has the form 

α+β−β−α+, with α+β− and α+β− of contrary orientations on Ty. Take x ∈ Ci∩Q−1
y �= ∅

and define l(x) = c−1(x) ∩ α+β− and r(x) = c−1(x) ∩ α+β−. Of course, l(x) and r(x)
contain each a single tangent direction for x ∈ C(y) \ C3(y), and at least one of them 
has at least two tangent directions for x ∈ C3(y). In any case, let lα(x) be the tangent 
direction in l(x) closest to α+ along the arc α+β−, and let lβ(x) be the tangent direction 
in l(x) closest to β+ along the same arc α+β−; possibly lα(x) = lβ(x). Similarly, let 
rα(x), rβ(x) be the tangent directions in r(x) closest to α+, respectively β−, along the 
arc α+β−. By definition, the angle between lα(x) and rα(x) towards α+ is at most π, as 
is the angle between lβ(x) and rβ(x) towards β+. Because S is orientable, for z ∈ e \{x}
both l(z) and r(z) are inside precisely one of the above two angles, hence z /∈ Q−1

y and 
the claim follows.

The metric we considered is, by Theorem 4.1, such that for any x ∈ Ccp
3 (y) and any 

two segments γ, γ′ joining y to x, the angle of γ, γ′ at y satisfies ∠γγ′ �= π. Therefore, 
for any two cycles Ci with w(Ci) �= 0, the points Q−1

y ∩ Ci are different and thus |Q−1
y |

is odd. �
5. Torus case

In this section we show that the statement of Theorem 4.2 is sharp, in the sense 
pointed out by Theorem 5.2.
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Fig. 1. Construction for a point y on a torus, with |Q−1
y | = 2.

We will use the following result of A. D. Weinstein (Proposition C in [20]).

Lemma 5.1. Let M be a d-dimensional Riemannian manifold and D a d-disc embedded in 
M . There exists a new metric on M agreeing with the original metric on a neighbourhood
of M minus the interior of D, such that, for some point p in D, the exponential mapping 
at p is a diffeomorphism of the unit disc about the origin in the tangent space at p to M , 
onto D.

Theorem 5.2. For any point y on the torus T , there exist sets of metrics Ey
i on T (i ∈

{1, 2, 3, 4, 5}), such that |Q−1
y | = i with respect to any metric g ∈ Ey

i and, moreover, 
intEy

j �= ∅ for j ∈ {1, 3, 5}, while Ey
k contains continuous families of metrics for k ∈

{2, 4}.

Proof. We indicate next a construction to get |Q−1
y | = 2; it can be easily adapted to 

obtain the conclusion. (The stability of the respective constructions under small pertur-
bations, for j ∈ {1, 3, 5}, provides the non-empty interior.)

Consider, in the hyperbolic plane H of constant curvature −1, a circle C of centre y
and radius r, with r > 0 a parameter to be chosen later. Fig. 1 illustrates in the plane 
our construction.

Consider points v1 and v2 diametrically opposite on C. On one of the half-circles 
bounded by v1 and v2 consider points w3, u3, w2 such that v2, w2, v3, w3, v1 are in cir-
cular order and λ(v1w3) = λ(v2w2) > λ(v3w3). On the other half-circle consider points 
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w1, w′
1, v

′
2 such that λ(v1w1) = λ(v3w2) and λ(w1w

′
1) = λ(v3w3) = λ(v2v

′
2). Of course, 

we may choose w2 such that v1, w1, w′
1, v

′
2, v2 are in circular order. Let u1 be the mid-

point of w1w
′
1, u2 the mid-point of v2v

′
2, m the mid-point of u1u2, and u3 the mid-point 

of v3w3.
We may choose r such that the total angle θv at v verifies θv := ∠w1v1w3+∠u2v2w2+

∠w2v3w3 = 2π.
Cut the polygon v1w1u1mu2v2w3v3u3w3v1 out from H and naturally identify (glue 

along) the edges mu1 and mu2. Further naturally identify the edges in the following 
pairs: v1w1 and v2w2, v2w2 and v1w3, w1u1 and w3u3, and v2u2 and v3u3.

Denote by v the common image of v1, v2, v3, by w the common image of w1, w2, w3, 
by u the common image of u1, u2, u3, by y the image of y, and by m the image of m, via 
the above glueing procedure.

The resulting closed surface is a torus T ′′ with conical singularities at the points 
m (where θm = π), u (where θu = ∠w1u1m + ∠mu2v2 + π > 2π), and w1 (where 
θw1 = ∠v1w1u1 + ∠v2w2v3 + ∠v3w3v1 > 2π).

Smoothen first T ′′ locally around m and w to obtain a surface T ′ with unique sin-
gularity at u. Of course, small changes around those points do not affect the segments 
from y to v or u. Moreover, because the directions of the segments from w to y were 
all included in an open half-circle of Ty, this property will remain true for all points in 
T ′ \ T ′′.

Next we show how to smoothen T ′ around u. Consider a metrical ε-neighbourhood 
Uε of u on T ′, of boundary length l = l(ε, θu) = λ(∂Uε). Consider some α < −1 such 
that, on the hyperbolic plane of constant curvature α, the geodesic ball D of radius 
ε has boundary length precisely l. Cut Uε off T ′ and replace it by D. Also denote by 
u the center of D after the replacement. By Lemma 5.1, there exists a torus T whose 
metric outside a neighbourhood of D coincides with the metric on T ′, and such that the 
directions of the segments from u to p = y remain the same as those on T ′. Therefore, 
on the obtained Riemannian surface T we have Q−1

y = {v, u}.
Of course, continuous changes of the positions of w1, w2, w3 yield continuous families 

of metrics with the desired property. �
6. An upper bound for |Q−1

y |

Theorem 6.1. Let S be an orientable (Riemannian) surface of genus g and y a point in 
S.

If g = 0, then |Q−1
y | = 1, and if g = 1, then |Q−1

y | ≤ 5.
If g ≥ 2, then |Q−1

y | ≤ 8g − 5.

Proof. The proof consists of two steps. First we directly prove that |Q−1
y | ≤ 8g− 4, and 

afterward we invoke Theorem 4.2 to decrease that upper bound by 1.

Step 1. In virtue of Lemma 2.2, we may consider only points y ∈ S with Q−1
y ⊂ Ccp(y).
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As in the proof of Theorem 3.2, we consider Ccp(y) = (V, E) as a graph, with vertex 
set V = Ccp

3 (y) and edge set E the set of components of Ccp(y) \V . By Theorem 3.2, each 
edge of Ccp(y) contains at most one interior point x ∈ Q−1

y , so �2y ≤ 6g − 3, �3y ≤ 4g − 2, 
and �2y + �3y ≤ 10g − 5.

Notice that this upper bound on |Q−1
y | is only imposed by the topology of S. We 

refine it next by local geometrical considerations.
For the graph Ccp(y) = (V, E), call an edge white if it intersects Q−1

y , and black if it 
doesn’t. A vertex is white if it belongs to Q−1

y , and black otherwise. A Y is a subgraph 
of Ccp(y) formed by a vertex x of degree three and three edges issuing at x.

Assume first that Ccp(y) is a cubic graph.
We claim that, if there exists a white Y in Ccp(y), then no other edge is white. To see 

this, assume the edges ekl, ekm and ekn are white and share a common extremity, say vk. 
Then the images on Ty of the vertices incident to these edges respect the circular order 
vl, vk, vm, vn, vk, vl, vm, vk, vn. Since the images of each edge in the white Y contain 
opposite points with respect to the centre of Ty, there is no place for other white edges.

Thus, if |E| = 3, then S has genus 1 (because it is orientable) and we get the upper 
bound |Q−1

y | ≤ |V | + |E| = 5. This is sharp, as one can easily see for a flat torus whose 
fundamental domain is a parallelogram.

If g > 1 then, by our claim, at least one third of the edges are black. Assuming all 
vertices are white, we obtain |Q−1

y | ≤ 8g − 4.
So we have obtained an upper bound |Q−1

y | ≤ B3(g) = 8g − 4, if Ccp(y) is a cubic 
graph. We treat now the general case, in order to obtain an upper bound |Q−1

y | ≤ B(g)
with no restriction on the degree of vertices in V .

Slightly modify the metric g of S around the vertices of Ccp(y) of degree larger than 
three to obtain a new metric g′ on S close to g, with the following properties: every 
vertex in Ccp(y)(g′) has degree three, and every white edge of Ccp(y)(g) is still white 
in Ccp(y)(g′). This is possible by small perturbations of g around (some of) the vertices 
x ∈ Ccp(y)(g) with degx > 3 (see Theorem 4.1). Notice that, for g′ close enough to g, 
there cannot be more white edges in Ccp(y)(g) than in Ccp(y)(g′). As for the vertices, 
two or more black neighbours in Ccp(y)(g′) may correspond to a white vertex of degree 
larger than 3 in Ccp(y)(g), which reduces to repaint in white at most half of the non 
isolated black vertices of Ccp(y)(g). Thus, we get

B(g) ≤ B3(g) + 1
2
∣∣V \

(
Q−1

y ∪ {v ∈ V : v is black and isolated}
)∣∣ . (1)

Since our upper bound B3(g) assumes all vertices to be white, the inequality (1) gives

B(g) ≤ B3(g) = 8g − 4

and the proof of Step 1 is complete.

Step 2. Consider now metrics on S as in Theorem 4.2, hence the upper bound in this 
case is odd, namely B3(g)odd = 8g − 5.
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The proof of Theorem 4.2 also shows that, if its cardinality is not odd, Q−1
y contains 

“double” points; i.e., points corresponding to several cycles. This, of course, implies 
that, in case |Q−1

y | is even, Q−1
y doesn’t have maximum number of elements. Therefore, 

B(g) ≤ B3(g) ≤ B3(g)odd = 8g − 5 and the proof is complete. �
7. Applications

With the special case of mutually critical points deals [24]. A yet more particular case 
is that of pairs of points at distance equal to the largest distance on S,

d(S) = maxx,y∈Sρ(x, y).

For any x ∈ S, we call ρ−1
x (d(S)) the diametrally opposite set of x, if it is not void. In 

this case, the point x itself is called diametral; of course, not every point is necessarily 
diametral.

Notice that any diametrally opposite set verifies ρ−1
x (d(S)) ⊂ Qx∩Q−1

x for any x ∈ S.
If S is homeomorphic to S2, every diametrally opposite set contains a single point, by 

Theorem 1 in [2] (see also [19]). In the standard projective plane, every point is diametral 
and any diametrally opposite set is a circle. If S is orientable, every diametrally opposite 
set is finite, by Theorem 3.2 or Theorem 6.1.

In analogy with the characterization provided by Theorem 2 in [2] (given here as 
Lemma 2.3), we may think of a similar one imposing cardinality 1 for all diametrally 
opposite sets. But this condition is weaker. Although surfaces homeomorphic to S2 sat-
isfy, by Theorem 1 in [2], the imposed condition, there are further examples of surfaces 
verifying it: any flat torus with a rectangular fundamental domain has only single-point 
diametrally opposite sets.

In any flat torus without a rectangular fundamental domain, the diametrally opposite 
set of every point x has exactly 2 points.

A direct consequence of Theorem 6.1 is the following.

Corollary 7.1. For any point y on an orientable surface of genus g ≥ 2, the set F−1
y has 

at most 8g − 5 points. Hence any diametrally opposite set has at most 8g − 5 points.

Concerning the tightness of Theorem 6.1 (and Corollary 7.1) we obtain the following.

Theorem 7.2. There exist orientable surfaces T̃g of genus g with diametrally opposite sets 
consisting of 4g+ 1 points, where 2g+ 1 points are of type 2 and 2g points are of type 3.

Proof. For the case of surfaces homeomorphic to S2, see Theorem 1 in [2].
Take now a flat torus with a parallelogram, union of two equilateral triangles with a 

common edge, as fundamental domain.
In such a torus, for any point y, C(y) is a Θ-shaped graph. Cut along C(y) and unfold 

to obtain a regular hexagon v1v2v1v2v1v2. (If y is taken to be the identified vertices of the 
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Fig. 2. Inductive construction for tower graphs. Glueing a surface T2 of genus 2 to a torus T1, to obtain the 
surface T3 of genus 3: the right-most edge of C(y) on T2 is identified to the left-most edge of C(y) on T1, 
to get C(y) on T3. The points in Q−1

y are marked by small circles.

parallelogram, then v1 and v2 are the centres of the two triangles.) Replace small discs of 
radius ε about the midpoints m1, m2, m3 of the three distinct edges of the hexagon and 
about the centre (also denoted by) y of the hexagon, by congruent bumps, all bounded 
by circles of length 2πε. The bumps have centres m̃i and ỹ at distance 1√

3 − 1
2 + ε from 

the respective boundaries. In this way we obtain a torus T̃1, on which

ρ(ỹ, v1) = ρ(ỹ, v2) = ρ(ỹ, m̃1) = ρ(ỹ, m̃2) = ρ(ỹ, m̃3) = 1√
3

= d(T̃1).

Thus, {v1, v2, m̃1, m̃2, m̃3} is a diametrally opposite set of ỹ.
Next we define inductively surfaces Tg for all g ≥ 2, with the following properties.
The domain Dg = Tg \ C(y) is a regular 6(2g − 1)-gon of centre y in the hyperbolic 

plane of constant curvature −1, with the property that all its angles are 2π/3.
The cut locus of y in Tg is a –horizontally sitting– tower-shape graph with 2g + 1

levels. Each level-edge provides a point in Q−1
y of type 2, where from �2y = 2g + 1, and 

each vertex of even level is of type 3, so �3y = 2g. Fig. 2 shows the case g = 2, as well as 
where to attach a handle to T2 in order to obtain the order of vertices on D3.

To see that we can realize the tower-shape graphs as cut loci, it needs to specify how 
to identify (i.e., the order of) vertices and edges on Dg.

The domain D2 = T2 \C(y) is a regular 18-gon whose vertices, given in circular order, 
are 1, 2, 3, 4, 5, 6, 5, 4, 1, 2, 1, 4, 3, 6, 5, 6, 3, 2. The edges, following the above order 
of vertices, are a, b, c, d, e, f , d, g, h, a, g, c, i, e, f , i, b, h, see Fig. 3. Clearly, only the 
points 1, 2, 5, 6 are of type 3, and only the edges a, c, e, f , h of C(y) contain each a 
point of type 2, hence �2y = 5, �3y = 4, and |Q−1

y | = 9.
Assume we have Tg and y ∈ Tg as above. Choose the right-most edge of C(y), say e, 

and attach along it a handle. This reduces to locate the two images of e on bdDg and 
to insert between their extremities (labeled 4g − 2 and 4g − 3) the points 4g − 1, 4g +
2, 4g+1, 4g+2, 4g− 1, 4g, and respectively 4g− 1, 4g, 4g+1, 4g+2, 4g+1, 4g, see again 
Fig. 3. Label the vertices of Dg+1 with the new obtained order. Identify the edges in the 
obvious way to obtain Tg+1, and notice that �2y = 2g + 1, �3y = 2g.

Finally, replace (as in the case g = 1) small disks about the midpoints of the distinct 
edges of bdDg+1 and about the centre y of Dg+1, by congruent bumps of centres x̃i, ỹ
in order to obtain ρ(ỹ, ̃xi) = d(T̃g+1), where T̃g+1 is the constructed surface. �
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Fig. 3. Domain D2. The points in Q−1
y are marked by small circles.

8. Open questions

Our approach leaves open several problems, among which we state in the following 
only three that we find particularly interesting.

1. The number of points with respect to which a point y on a flat torus is critical, does 
not depend on y. This and Theorem 1 in [2] lead us to the following question.
Find all surfaces S with the property that |Q−1

y | does not depend on y ∈ S.
2. For the first step in the proof of Theorem 6.1, we considered points x ∈ Q−1

y which 
are vertices of Ccp(y), and white subgraphs Y of Ccp(y) centered at x. In other 
words, if we endow the graph Ccp(y) with the discrete natural metric, we considered 
1-neighbourhoods of the points in Q−1

y ∩Ccp
3 (y). Would the use of k-neighbourhoods, 

with k ≥ 2, improve the upper bound?
3. Every orientable surface of genus g > 0 possesses points x, y such that y ∈ Qx and 

there are two segments from y to x with opposite tangent directions at y (see the 
proof of Theorem 2 in [2]).
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Is the same true for all surfaces homeomorphic to the sphere? Or, at least, is it true 
for densely many surfaces homeomorphic to the sphere?
For a similar – still open – problem concerning convex surfaces, see [22].
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