Poidge-convexity

Bo Wang Liping Yuan* Tudor Zamfirescu

September 6, 2021

Abstract

We investigate in this paper the poidge-convexity, which is a generalization of right convexity, introduced by one of the present authors in 2014. Although not every convex body is poidgeconvex, there are many families of compact sets, some of them very different from convex bodies, which are poidge-convex. We present here several such families.

Keywords: poidge-convexity; starshaped sets; topological discs; polyhedral surfaces.

2010 MSC: 52A01, 52A37.

1 Introduction

At the 1974 meeting about convexity in Oberwolfach, the third author proposed the investigation of the following very general kind of convexity. Let \mathcal{F} be a family of sets in a space \mathscr{X}. A set $M \subset \mathscr{X}$ is called \mathcal{F}-convex if for any pair of distinct points $x, y \in M$ there is a set $F \in \mathcal{F}$ such that $x, y \in F$ and $F \subset M$. In this paper, \mathscr{X} will be \mathbb{R}^{n}; we always assume $n \geq 2$. Usual convexity, affine linearity, arc-wise connectedness, polygonal connectedness, are just some examples of \mathcal{F}-convexity (for suitably chosen families \mathcal{F}).

Blind, Valette and the third author [1], and also Böröczky Jr. [2], investigated the rectangular convexity, the case when \mathcal{F} is the family of all non-degenerate rectangles.

Bruckner and Bruckner [7], and also Magazanik and Perles [11] investigated L_{n} sets, which are \mathcal{F}-convex sets, \mathcal{F} consisting of all polygonal paths with at most n edges in the plane. Magazanik and Perles [10] and Breen $[3,4,5,6]$ dealt with staircase connectedness, which is also a kind of \mathcal{F}-convexity, \mathcal{F} being the family of all staircases. The third author studied the right convexity [18] (the case with \mathcal{F} consisting of all right triangles), and the last two authors, generalizing it, investigated the rt-convexity, i.e. the right triple convexity [12, 13].

[^0]A set $M \subset \mathbb{R}^{n}$ is called r t-convex if it is \mathcal{F}-convex, \mathcal{F} being the family of all triples $\{x, y, z\} \subset \mathbb{R}^{n}$ with $\angle x y z=\pi / 2$. If, for $x, y \in M$, there exists $z \in M$ such that the triangle $x y z$ is right, we say that the pair x, y has the rt-property.

A set M will be called poidge-convex if it is \mathcal{F}-convex, \mathcal{F} being the family of all unions $\{x\} \cup \sigma$, called poidges, where x is a point, σ a line-segment, and $\operatorname{conv}(\{x\} \cup \sigma)$ a right triangle (see Figure 1). If, for points $u, v \in M$, there is a poidge containing them included in M, we say that the pair u, v has the poidge-property.

Figure 1: Poidges
For convex sets, right convexity, rt-convexity and poidge-convexity are equivalent. Obviously, in general, not every rt-convex set is poidge-convex, but every rightly convex set is both r-convex and poidge-convex. Less obvious, but true, is that not every poidge-convex set is $r t$-convex either.

The poidge-convexity also generalizes the thin rectangular convexity (for short $t r$-convexity, where \mathcal{F} is the family of all boundaries of non-degenerated rectangles), and a fortiori the rectangular convexity itself.

In this paper, we start the investigation of poidge-convexity. Our main goal will be to identify large classes of poidge-convex sets. On the one hand, not all convex bodies are poidge-convex: take, for example, the convex hull of an ellipse different from a circle. On the other hand, sets looking quite different from being convex, like meandering topological discs or single-point-kernel starshaped sets, can be found among the poidge-convex sets.

2 Notation

For distinct $x, y \in \mathbb{R}^{n}$, let $x y$ denote the line-segment from x to y, and $\overline{x y}$ the line through x, y.

For any compact set $M \subset \mathbb{R}^{n}$, let S_{M} be the smallest hypersphere containing M in its convex hull; also, \bar{M} means the affine hull of M, int M the relative interior of M (i.e., in the topology of \bar{M}) and bd M the relative boundary of M.

By $\operatorname{dim} M$ we denote the Hausdorff dimension of M. Also, denote by $\mathbb{p}_{A}(x)$ the orthogonal projection of x onto the affine subspace A. The distance from a point x to a compact set M will be denoted by $\rho(x, M)=\min \{\|x-y\|: y \in M\}$.

Furthermore, for distinct $x, y \in \mathbb{R}^{n}$, we denote by $H_{x y}$ the hyperplane through x orthogonal to $\overline{x y}$, by $H_{x y}^{+}$the closed half-space containing y determined by $H_{x y}$, and by $H_{x y}^{-}$the other closed half-space determined by $H_{x y}$.

We denote by $[x y)$ the half-line starting at x and passing through y. Also, we set $\widehat{x k y}=$ $\operatorname{conv}([k x) \cup[k y))$, if $k \notin x y$.

The compact ball of centre ω and radius r is denoted by $B_{r}(\omega)$. $\mathbf{0}$ is the origin of \mathbb{R}^{n}.
In a Baire space, we say that most of its elements have property \mathbf{P} if those not enjoying \mathbf{P} form a set of first Baire category.

3 Starshaped sets

3.1 One-sided starshaped sets

Let \mathcal{S} be the Baire space of all starshaped sets in \mathbb{R}^{n}, always considered compact here. For $M \in \mathcal{S}$, a line-segment $k x \subset M$ is called a ray if $k \in \operatorname{ker} M$ and $k x$ cannot be extended beyond x in M.

It is known (see the corollary to Theorem 1 in [17]) that most starshaped sets have a single-point kernel. Moreover, in \mathcal{S}, the set of those starshaped sets M with $\operatorname{card}\left(M \cap S_{M}\right)=2$ is nowhere dense. For a proof, the reader can adapt the first part of the proof of Theorem 1 in [16], which deals with convex curves instead of starshaped sets.

More generally, we call any compact set M ordinary if $\operatorname{card}\left(M \cap S_{M}\right) \geq 3$.
Clearly, being ordinary is a necessary condition for any compact set to be poidge-convex.
Let $M \subset \mathbb{R}^{2}$ be a starshaped set with more than one point, and let $k \in \operatorname{ker} M$. The set M will be called one-sided, if there exist half-lines $[k x)$ and $[k y)$ such that
(i) $M \subset \widehat{x k y}$, or
(ii) $[k x)$ and $[k y)$ are opposite, i.e. $[k x) \cup[k y)$ is a line, and M is included in one of the two half-planes with boundary $[k x) \cup[k y)$.

Now, taking $\angle x k y$ to be minimal over all $x, y \in \mathbb{R}^{2} \backslash\{k\}$ and $k \in \operatorname{ker} M$ in case (i), we call $\omega(M)=\angle x k y$ the opening of M. In case (ii), put $\omega(M)=\pi$. Thus, $0 \leq \omega \leq \pi$. (Note that $M \neq\{k\}$ because card $M>1$.) See Figure 2.

We call M acute, if there exists no non-degenerate triangle $k x y \subset M$, where $k x$ is a ray of M.

Theorem 3.1. Let $M \subset \mathbb{R}^{2}$ be an ordinary one-sided starshaped set. If $0<\omega(M) \leqslant \frac{\pi}{2}$, then M is poidge-convex. If M is acute and $\frac{\pi}{2}<\omega(M)<\pi$, then M is not poidge-convex.

Figure 2: The opening of an one-sided starshaped set

Proof. Take the point k from the definition of the opening to be $\{\mathbf{0}\}$. Assume $0<\omega(M) \leqslant \frac{\pi}{2}$. Let $x, y \in M \backslash\{\mathbf{0}\}$, with $\|x\| \leqslant\|y\|$. If x, y are linearly independent, consider $z=\mathbb{p}_{\overline{\mathbf{0} y}}(x)$. Then $\{x\} \cup z y \subset M$. If x, y are linearly dependent, there exists $u \in M \backslash \overline{\mathbf{0} y}$, since $\omega(M)>0$. Consider a point $v \in \mathbf{0} u$ close to $\mathbf{0}$ and $w=\mathbb{p}_{\overline{\mathbf{0} y}}(v)$. Then x, y belong to $\{v\} \cup w y \subset$ M. It remains to consider the pairs $(\mathbf{0}, x) \in M$. Let $\mathbf{0} y$ be the ray containing x. From $\operatorname{card}\left(M \cap S_{M}\right) \geqslant 3$ it follows that M has a point $z^{\prime} \notin \operatorname{int} \operatorname{conv} S_{\mathbf{0} y}$ different from $\mathbf{0}$ and y. One possibility is that $\angle z^{\prime} \mathbf{0} y<\frac{\pi}{2}$. Then $\mathbf{0} z^{\prime} \cap S_{\mathbf{0} y} \neq\{\mathbf{0}, y\}$. Take $z \in \mathbf{0} z^{\prime} \cap S_{\mathbf{0} y} \backslash\{\mathbf{0}, y\}$; possibly $z=z^{\prime}$. Obviously, the points $\mathbf{0}, x$ belong to the poidge $\{z\} \cup \mathbf{0} y \subset M$. The other possibility is that $\angle z^{\prime} \mathbf{0} y=\frac{\pi}{2}$. In this case, $\mathbf{0}, x$ belong to the poidge $\left\{z^{\prime}\right\} \cup \mathbf{0} y \subset M$.

Now assume $\frac{\pi}{2}<\omega(M)<\pi$. There exist two rays $\mathbf{0} x, \mathbf{0} y$ of M such that $\frac{\pi}{2}<\angle x \mathbf{0} y<\pi$. We claim that x, y do not enjoy the poidge-property. Since every line-segment in M starting at x or y must be collinear with $\mathbf{0}$, otherwise M would not be acute, the only way for x, y to have the poidge-property would be to belong to a poidge with its line-segment σ along one of the rays $\mathbf{0} x, \mathbf{0} y$. But since $\angle x \mathbf{0} y>\frac{\pi}{2}, \sigma$ would contain $\mathbf{0}$ in its relative interior. This contradicts the inequality $\omega(M)<\pi$.

It is easily seen that, for $\omega(M)=0, M$ is not poidge-convex and, for $\omega(M)=\pi$, both poidge-convexity and non-poidge-convexity are possible.

We consider the family \mathcal{S}^{κ} of all one-sided $M \in \mathcal{S}$ with bounded opening $\omega(M) \leq \kappa$. This family is closed in \mathcal{S}, and is therefore itself complete and consequently a Baire space.

Theorem 3.2. For $0<\kappa \leq \pi / 2$, most sets in \mathcal{S}^{κ} are poidge-convex.
For $\pi / 2<\kappa<\pi$, most sets in \mathcal{S}^{κ} are not poidge-convex.
Proof. For any $\kappa \in] 0, \pi\left[\right.$, most sets in \mathcal{S}^{κ} are ordinary. The proof parallels the one for \mathcal{S} or for the space of all convex curves instead of \mathcal{S}^{κ}. Moreover, the sets $M \in \mathcal{S}^{\kappa}$ with $\omega(M)=0$
form a nowhere dense family. Hence, by the first part of Theorem 3.1, most sets in \mathcal{S}^{κ} are poidge-convex.

For any $\kappa<\pi$, most sets in \mathcal{S}^{κ} are nowhere dense (the proof works like in the case of \mathcal{S} instead of \mathcal{S}^{κ}, see the corollary to Theorem 1 in [17]), hence acute. By the second part of Theorem 3.1, most sets in \mathcal{S}^{κ} are not poidge-convex.

3.2 Symmetric starshaped sets

Clearly, the space \mathcal{S}^{*} of all (point) symmetric starshaped sets in \mathbb{R}^{n} is closed in \mathcal{S}, so it is itself a Baire space.

Like most starshaped sets, most symmetric starshaped sets have a single-point kernel.
If a starshaped set is symmetric, then its kernel is also symmetric, with the same centre of symmetry, say $\mathbf{0}$. Being convex, the kernel contains $\mathbf{0}$.

Theorem 3.3. A set $M \in \mathcal{S}^{*}$ is poidge-convex if and only if it is ordinary.
Proof. Suppose $M \in \mathcal{S}^{*}$ is ordinary. Take $x, y \in M \backslash\{\mathbf{0}\}$, assuming without loss of generality that $\|x\| \leqslant\|y\|$. Suppose first that x, y are linearly independent. Taking $z=\mathbb{p}_{\overline{0} y}(x)$, we have $\{x, y\} \subset\{x\} \cup z y \subset M$. If x, y are linearly dependent, then $x \in y(-y)$. If $S_{y(-y)} \cap M=\{y,-y\}$, then M is not ordinary. Hence, $S_{y(-y)} \cap M$ contains some point $z \notin\{y,-y\}$, and x, y belong to the poidge $\{z\} \cup y(-y)$.

Suppose now that M is not ordinary, whence it has a single diameter $x(-x)$. There is no point $z \in S_{x(-x)} \cap M \backslash\{x,-x\}$. Moreover, the hyperplanes $H_{x(-x)}$ and $H_{(-x) x}$ meet M in $x,-x$ only. So, $x,-x$ don't belong to any poidge in M.

The next result has a corresponding one for convex bodies (with a similar proof), and uncovers a major discrepancy in comparison with the non-symmetric case.

Theorem 3.4. Most sets belonging to \mathcal{S}^{*} are not ordinary.
Proof. Let \mathcal{S}_{m}^{*} be the set of all $M \in \mathcal{S}^{*}$ having a pair of diameters at Pompeiu-Hausdorff distance at leat $1 / m$ from each other. We prove that \mathcal{S}_{m}^{*} is nowhere dense in \mathcal{S}^{*}.

Let $\mathcal{O} \subset \mathcal{S}^{*}$ be open and $M \in \mathcal{O}$. Choose a diameter of M. This is also a diameter of S_{M}. Extend it in both directions by $\varepsilon>0$ to a line-segment Δ_{ε}. Then $M_{\varepsilon}=M \cup \Delta_{\varepsilon}$ belongs to \mathcal{S}^{*} and has the unique diameter Δ_{ε}. If ε is small enough, $M_{\varepsilon} \in \mathcal{O}$, too. There exists an open neighbourhood \mathcal{N} of M_{ε} in \mathcal{O} such that every set belonging to \mathcal{N} has all its diameters at distance less than $1 / 2 m$ from Δ_{ε}. This shows that they are not in \mathcal{S}_{m}^{*}. Thus, \mathcal{S}_{m}^{*} is nowhere dense, and the set $\cup_{m=1}^{\infty} \mathcal{S}_{m}^{*}$ of all $M \in \mathcal{S}^{*}$ having more than one diameter is of first Baire category.

Corollary 3.5. Most sets belonging to \mathcal{S}^{*} are not poidge-convex.

3.3 Starshaped sets close to convex

We introduce a measure of non-convexity for non-convex starshaped sets, which might be of independent interest. Line-segments $x y$ joining $x, y \in \operatorname{bd} M$ are called chords of the set $M \subset \mathbb{R}^{n}$. Let k belong to the kernel ker M of $M \in \mathcal{S}$. Let $\Gamma(M)$ be the set of chords $x y$ of M not included in M. Let

$$
\xi(M)=\sup _{x y \in \Gamma(M)} \inf _{k \in \operatorname{ker} M} \angle x k y .
$$

See Figure 3. If the sequence $\left\{M_{m}\right\}_{m=1}^{\infty}$ of starshaped sets converges, and $\xi\left(M_{m}\right) \rightarrow 0$, then the limit set is convex. Thus, ξ indicates how close to being convex a starshaped set is. We shall see that starshaped sets "closer" to convex ones, i.e. with smaller value of ξ, are more likely to be poidge-convex.

Figure 3: The function ξ.

Theorem 3.6. If $M \subset \mathbb{R}^{2}, M \in \mathcal{S}, M$ is ordinary, $\operatorname{dim} \operatorname{ker} M>1$, and $\xi(M)<\frac{\pi}{2}$, then M is poidge-convex.

Proof. Let $x, y \in M$.
Case 1. $x y \subset M$.
Being ordinary, M must have a point $z \notin\left(\right.$ int conv $\left.S_{x y}\right) \cup\{x, y\}$.
If $z \in S_{x y}$, then $\{z\} \cup x y$ is a suitable poidge. If $z \in H_{x y} \cup H_{x y}$, then again $\{z\} \cup x y$ is a suitable poidge. So, let z lie in one of the four components of $\mathbb{R}^{2} \backslash\left(H_{x y} \cup H_{y x} \cup \operatorname{conv} S_{x y}\right)$, namely $H_{x y}^{-}, H_{y x}^{-}, E_{1}, E_{2}$.

Take $k \in(\operatorname{ker} M) \backslash(\overline{x y} \cup \overline{x z} \cup \overline{y z})$. This is possible, because $\operatorname{dim} \operatorname{ker} M>1$.
If $k \in\left(H_{x y} \cup H_{y x} \cup S_{x y}\right)$, we are done.
If $k \in E_{1} \cup E_{2}$, then $k x \cap S_{x y} \neq \emptyset$, and we are done again.

If $k \in H_{x y}^{-}$, then $k y$ meets $H_{x y}$ and the intersection point is not x. For $k \in H_{y x}^{-}$, we have an analogous situation. So, assume k lies in int conv $S_{x y}$.

Now, we consider again the positions that z may take.
If $z \in H_{x y}^{-}$, then $k z \cap H_{x y} \neq \emptyset$ and the intersection point is not x.
If $z \in H_{y x}^{-}$, then $k z \cap H_{y x} \neq \emptyset$ and the intersection point is not y.
Finally, if $z \in E_{1} \cup E_{2}$, then $k z \cap S_{x y} \neq \emptyset$.
Thus, in all cases a poidge in M including $x y$ can be found.
Case 2. $x y \not \subset M$.
Extend $x y$ until we obtain a chord $x^{\prime} y^{\prime} \in \Gamma(M)$. Since $\inf _{k \in \operatorname{ker} M} \angle x^{\prime} k y^{\prime} \leq \xi(M)<\pi / 2$, we find a point $k^{*} \in \operatorname{ker} M$ satisfying $\angle x^{\prime} k^{*} y^{\prime}<\pi / 2$, which implies $\angle x k^{*} y<\pi / 2$.

Assume without loss of generality that $\left\|k^{*}-x\right\| \leq\left\|k^{*}-y\right\|$. Now, if $z=\mathbb{p}_{\overline{k^{*} y}}(x)$, then $\{x\} \cup z y$ is a suitable poidge.

4 Topological discs

4.1 Smooth topological discs

For a set $M \subset \mathbb{R}^{2}$ with differentiable boundary, a chord $x y$ is called a double normal of M if it is orthogonal to both tangent lines of bd M at x and y (see Figure 4).

Figure 4: A double normal $x y$.
Let \mathfrak{D}_{m} be the space of all planar topological discs with a C^{m}-boundary.
Theorem 4.1. A topological disc $D \in \mathfrak{D}_{2}$ is poidge-convex if for any double normal $x y$ of bd D, the curvature of bd D at x or y is less than $\frac{2}{\|x-y\|}$.

Proof. Clearly, x, y have the poidge-convex property if one of them is interior to D. So, let $x, y \in \operatorname{bd} D$. If $x y$ is not a double normal, then the tangent line at x or y is not orthogonal to $\overline{x y}$. Suppose the tangent line T at x is not orthogonal to $\overline{x y}$. Then there exists a small line-segment $x z \subset D$ orthogonal to $\overline{x y}$. Thus, $\{y\} \cup x z$ is a suitable poidge.

If $x y$ is a double normal, by hypothesis, at x or y, say at x, the curvature radius satisfies $\rho(x)>\frac{\|x-y\|}{2}$. This implies that $S_{x y}$ has a small arc starting at x, inside of D. If that arc is $\widehat{x z}$, then the poidge $\{y\} \cup x z$ is as required. (Notice that the case that D is not locally convex at x is not excluded. In that case, the curvature condition is even superfluous.)

Remarks. A topological disc must have at least one double normal: take its diameter!
The condition, which works for $r t$-convexity, that D has at least two diameters, or that D is ordinary (i.e. card $\left(D \cap S_{D}\right) \geqslant 3$), is not sufficient for the poidge-convexity.

We offer now an extension of Theorem 4.1 to topological discs with boundaries of class C^{1}.

Suppose $D \subset \mathbb{R}^{2}$ is a topological disc, locally convex at some boundary point x. Then, if bd D is differentiable at x, a lower and an upper curvature, $\gamma_{i}(x)$ and $\gamma_{s}(x)$, at x can be defined, as in [8] (page 14). The preceding theorem can be (in the same way) proven in the following more general form.

Theorem 4.2. A topological disc $D \in \mathfrak{D}_{1}$ is poidge-convex if, for any double normal xy of $\operatorname{bd} D$, at one of its endpoints, say at x, either D is locally convex and $\gamma_{s}(x)<\frac{2}{\|x-y\|}$, or $\mathbb{R}^{2} \backslash \operatorname{int} D$ is locally convex.

4.2 Unions of convex sets

Here, we consider unions of compact convex sets in \mathbb{R}^{n}, possibly of distinct dimensions.
Theorem 4.3. Every ordinary connected union of two ordinary compact convex sets is poidge-convex.

Proof. Let $M=A \cup B$, with A, B compact convex sets, satisfying the hypothesis. Let $x, y \in M$. If both x, y lie in A, or both in B, then we have a right triangle $x y z$ in A or in B because they are rightly convex, by Theorem 3 in [18]. So, assume without loss of generality that $x \in A \backslash B$ and $y \in B \backslash A$. If inside $S_{x y}$ there is no point of M, then $A \cap B=\emptyset$ and M is not connected. If $M \subset$ conv $S_{x y}$, then, M being ordinary, there exists a point $z \in S_{x y} \backslash\{x, y\}$. If $M \not \subset$ conv $S_{x y}$, but $S_{x y} \cap M=\{x, y\}$, then either $A \subset \operatorname{conv} S_{x y}$ and $B \cap \operatorname{conv} S_{x y}=\{y\}$, or vice-versa. In both cases M becomes disconnected, or one of the sets A, B is not ordinary, which is false.

Hence, in any (possible) case, there exists $z \in S_{x y} \cap M \backslash\{x, y\}$. Now, if $z \in A$ then $\{y\} \cup x z$ is a suitable poidge, and if $z \in B$, a suitable poidge is $\{x\} \cup y z$.

For $m \geq 3$, an ordinary connected union of m ordinary compact convex sets may not be poidge-convex, see Figure 5.

Figure 5: A connected union of 3 convex bodies.

5 Not simply connected sets

5.1 Convex bodies with spherical holes

It is easily seen that there are poidge-convex sets which are not simply connected. So, for example, the set $B_{1}(\mathbf{0}) \backslash \operatorname{int} B_{\varepsilon}(\mathbf{0})$ in \mathbb{R}^{2}, for any $\left.\varepsilon \in\right] 0,1[$.

Theorem 5.1. Let $K \subset \mathbb{R}^{2}$ be an ordinary convex body, and assume that $\mathbf{0}$ is the centre of S_{K}. The set $K \backslash \operatorname{int} B_{\alpha}(\mathbf{0})$ is poidge-convex, if α satisfies the following conditions. For any double normal ab of bd K,
(i) if ab is not a chord of S_{K}, then $\alpha \leq \rho(\mathbf{0}, a b)$, and
(ii) if ab is a chord of S_{K} and $c \in S_{K} \cap K \backslash\{a, b\}$, then $\alpha \leq \max \{\rho(\mathbf{0}, b c), \rho(\mathbf{0}, c a)\}$.

Proof. Let $L=K \backslash \operatorname{int} B_{\alpha}(\mathbf{0})$, and $x, y \in L$. We need to investigate only the case when $x y$ is a double normal of $\mathrm{bd} K$, which we now assume.

Case 1. $x y$ is not a chord of S_{K}.
In this case, $x y \subset L$, because $x y \cap \operatorname{int} B_{\alpha}(\mathbf{0})=\emptyset$, by condition (i). Since K is ordinary, $S_{x y} \cap K \neq\{x, y\}$. Choose $w \in S_{x y} \cap K \backslash\{x, y\}$. So, $\{w\} \cup x y$ is a poidge in L.

Case 2. $x y$ is a chord of S_{K}.
Since K is ordinary, $S_{K} \cap K \backslash\{x, y\}$ contains a point z. Now, we have $y z \cap \operatorname{int} B_{\alpha}(\mathbf{0})=\emptyset$ or $z x \cap \operatorname{int} B_{\alpha}(\mathbf{0})=\emptyset$, by condition (ii) of the hypothesis. Assume without loss of generality that $y z \cap \operatorname{int} B_{\alpha}(\mathbf{0})=\emptyset$.

Since $\angle y z x=\pi / 2$, we have the poidge $\{x\} \cup y z \subset L$.
Is always the existence of such a number α guaranteed?

Theorem 5.2. If $K \subset \mathbb{R}^{2}$ is an ordinary convex polygon, in which every double normal passing through the centre $\mathbf{0}$ of S_{K} is a chord of S_{K}, then a number α satisfying the conditions in Theorem 5.1 does exist.

Proof. Let \mathcal{D}_{1} be the family of those double normals of K which do not contain $\mathbf{0}$, and \mathcal{D}_{2} the complementary family of double normals, which must be chords of S_{K}.

Since no double normal in \mathcal{D}_{1} contains $\mathbf{0}, \beta=\min \left\{\rho(\mathbf{0}, N): N \in \mathcal{D}_{1}\right\}>0$.
The set of double normals passing through $\mathbf{0}$ is finite. For each double normal $N=a b \in$ \mathcal{D}_{2}, consider

$$
\gamma_{N}=\max \left\{\max \{\rho(\mathbf{0}, a x), \rho(\mathbf{0}, b x)\}: x \in S_{K} \cap \mathrm{bd} K \backslash\{a, b\}\right\}
$$

and $\gamma=\min \left\{\gamma_{N}: N \in \mathcal{D}_{2}\right\}>0$.
By choosing $\alpha=\min \{\beta, \gamma\}$, both conditions of Theorem 5.1 are satisfied, condition (i) for the double normals of \mathcal{D}_{1}, and condition (ii) for the double normals of \mathcal{D}_{2}.

Corollary 5.3. If $K \subset \mathbb{R}^{2}$ is an ordinary convex polygon, in which no double normal passes through the centre $\mathbf{0}$ of S_{K}, then a number α satisfying the conditions in Theorem 5.1 does exist.

Theorem 5.2 presents only sufficient conditions for a convex polygon to acquire an appropriate number α. All regular polygons are poidge-convex, although they do not satisfy the conditions of Theorem 5.2.

5.2 Tetrahedral surfaces

Starting with this section, we investigate the poidge-convexity of convex surfaces in \mathbb{R}^{n}, for $n=3$ or for larger n.

The following lemma is straightforward.

Lemma 5.4. Every non-obtuse triangle is poidge-convex.
Lemma 5.5. If P is a (n-1)-dimensional polytope in $\mathbb{R}^{n}, x \in \mathbb{R}^{n}$, and $y \in P \backslash(V(P) \cup\{x\})$, then there exists a poidge in $P \cup\{x\}$ containing both x and y.

Proof. Indeed, $H_{y x} \cap P$ includes a non-degenerate line-segment σ with an endpoint in y. Thus, $\{x\} \cup \sigma$ is a suitable poidge.

Theorem 5.6. Suppose abcd is a tetrahedron in \mathbb{R}^{3} with a non-obtuse facet (i.e. 2-dimensional face) abc. Then $\mathrm{bd}(a b c d)$ is poidge-convex if and only if

$$
d \in\left(H_{b a}^{+} \cup H_{c a}^{+}\right) \bigcap\left(H_{a b}^{+} \cup H_{c b}^{+}\right) \bigcap\left(H_{a c}^{+} \cup H_{b c}^{+}\right)
$$

The boundary of a tetrahedron with all facets obtuse is not poidge-convex.
Proof. Suppose $a b c$ and d are as stipulated in the first part of the theorem. We prove that bd ($a b c d$) is poidge-convex.

Let $x, y \in \mathrm{bd}(a b c d)$ be any two distinct points.
Case 1. There is a face F of $a b c d$ such that $x, y \in F$.
If F is a non-obtuse face, then there exists a poidge containing x, y and contained in F, by Lemma 5.4. If F is an obtuse face, then we obviously have to consider only the case that x, y are vertices of the longest edge of bd F. If that edge is included in bd $(a b c)$, then we find a poidge containing x and y in the face $a b c$, by Lemma 5.4. So, suppose the obtuse angle of F is not at d. Let d^{\prime} be the orthogonal projection of d on the plane $\overline{a b c}$.

Subcase 1.1. $d^{\prime} \in H_{b a}^{+} \cap H_{c a}^{+} \cap H_{a b}^{+} \cap H_{c b}^{+} \cap H_{a c}^{+} \cap H_{b c}^{+}$. (See Figure 6.)

Figure 6: $d^{\prime} \in H_{b a}^{+} \cap H_{c a}^{+} \cap H_{a b}^{+} \cap H_{c b}^{+} \cap H_{a c}^{+} \cap H_{b c}^{+}$.
All the angles $\widehat{d a c}, \widehat{d c a}, \widehat{d c b}, \widehat{d b c}, \widehat{d b a}, \widehat{d a b}$ are non-obtuse. Then the obtuse face F must have an obtuse angle at d, and we obtain a contradiction.

Subcase 1.2. $d^{\prime} \in\left(H_{c a}^{+} \cap H_{a c}^{+}\right) \backslash\left(H_{b a}^{+} \cap H_{b c}^{+}\right)$. (See Figure 7.)
All angles $\widehat{d a c}, \widehat{d c a}, \widehat{d c b}, \widehat{d a b}$ are non-obtuse. Clearly, $F \neq c a d$. If $F=b c d$, it must have its obtuse angle at b. If $d^{\prime \prime}$ is the orthogonal projection of d onto $\overline{a c}$, then $d^{\prime \prime} \in a c$ and x, y belong to the poidge $c d^{\prime \prime} \cup\{d\}$. The case $F=a b d$ is analogous.

The cases $d^{\prime} \in\left(H_{b c}^{+} \cap H_{c b}^{+}\right) \backslash\left(H_{a c}^{+} \cap H_{a b}^{+}\right)$and $d^{\prime} \in\left(H_{b a}^{+} \cap H_{a b}^{+}\right) \backslash\left(H_{c a}^{+} \cap H_{c b}^{+}\right)$are analogous to subcase 1.2.

Case 2. There are two distinct faces F_{1} and F_{2} such that $x \in F_{1}$ and $y \in F_{2}$.
If $x \in \operatorname{int} F_{1}$ or $y \in \operatorname{int} F_{2}$, then they have the poidge-property, by Lemma 5.5. Otherwise, $x \in \operatorname{bd} F_{1}$ and $y \in \operatorname{bd} F_{2}$, which means that we are in Case 1 , unless x and y are in opposite edges. Without loss of generality, we can assume that $x \in a d$ and $y \in b c$. Let w be the

Figure 7: $d^{\prime} \in\left(H_{c a}^{+} \cap H_{a c}^{+}\right) \backslash\left(H_{b a}^{+} \cap H_{b c}^{+}\right)$.
orthogonal projection of x onto $\overline{b c}$. Then $w \in b c$, and x, y will be contained in the poidge $\{x\} \cup w b$ or $\{x\} \cup w c$.

Now, let us show that, if $a b c$ is as required, but d not (see Figure 8), then bd (abcd) is not poidge-convex. This will be proved by showing that d and one of the other three vertices do not enjoy the poidge-property.

Figure 8: bd $(a b c d)$ is not poidge-convex.
If $d \notin H_{b a}^{+} \cup H_{c a}^{+}$, then the angles $\widehat{d c a}$ and $\widehat{d b a}$ are obtuse. Then, obviously, a and d do not enjoy the poidge-property. The cases $d \notin H_{b a}^{+} \cup H_{c a}^{+}$and $d \notin H_{a b}^{+} \cup H_{c b}^{+}$are analogous.

The proof of the first part of the theorem is now complete.
For the second part, assume all facets of the tetrahedron $a b c d$ are obtuse. Assume without loss of generality that $a b$ is a diameter of $a b c d$. The pair of points a, b has not the poidgeproperty. Indeed, $S \cap a b c d=\{a, b\}, H_{a b} \cap a b c d=\{a\}$ and $H_{b a} \cap a b c d=\{b\}$.

5.3 Boundaries of Cartesian products and cones

As we could see in the preceding section, there exist poidge-convex convex surfaces. However, many convex surfaces are not poidge-convex: for example, no strictly convex body has a poidge-convex boundary. Therefore, most convex surfaces are not poidge-convex (see [9]). We present now some classes of convex surfaces which are poidge-convex.

We consider the Cartesian product in \mathbb{R}^{n} of a k-dimensional compact convex set K and an $(n-k)$-dimensional compact convex set L, hence with \bar{K} orthogonal to \bar{L}.

Theorem 5.7. Every Cartesian product of compact convex sets of positive dimensions has a poidge-convex boundary.

Proof. We consider \bar{K} to be spanned by the first k axes, and \bar{L} by the last $n-k$ axes. Let $S=\operatorname{bd}(K \times L)$.

Let $x, y \in S$. We have $x=u \times t_{u}$ and $y=v \times t_{v}$, where $u, v \in K$ and $t_{u}, t_{v} \in L$.
Consider the chord $t_{u}^{\prime} t_{v}^{\prime}=\overline{t_{u} t_{v}} \cap L$ of L.
Case 1. $x, y \in\{u\} \times L$, where $u \in \operatorname{bd} K$.
Take $u^{\prime} \in K \backslash\{u\}$ arbitrarily. Then the poidge $\left\{u^{\prime} \times t_{u}^{\prime}\right\} \cup\left(\{u\} \times t_{u}^{\prime} t_{v}^{\prime}\right)$ contains x, y and lies in S.

Case 2. $x \in\{u\} \times L, y \in\{v\} \times L$, where $u, v \in \operatorname{bd} K$ are distinct.
If $t_{u}^{\prime}, t_{u}, t_{v}, t_{v}^{\prime}$ lie in this order on $\overline{t_{u} t_{v}}$, we have $t_{u} t_{v} \subset t_{u} t_{v}^{\prime}$. Then $\{x\} \cup\left(\{v\} \times t_{u} t_{v}^{\prime}\right)$ is a suitable poidge in S.

Case 3. $x, y \in K \times\{t\}$, where $t \in \operatorname{bd} L$.
For this case we have the poidge $\left(u \times t^{\prime}\right) \cup x y \subset S$, where $t^{\prime} \in(\operatorname{bd} L) \backslash\{t\}$.
Case 4. $x \in K \times\left\{t_{u}\right\}, y \in K \times\left\{t_{v}\right\}$, where $t_{u}, t_{v} \in \operatorname{bd} L$ are distinct.
If $u \neq v$, a good poidge is $\{y\} \cup x\left(v \times t_{u}\right)$. Otherwise, $\{y\} \cup x z$ is a good one, z being an arbitrary point of $K \times\left\{t_{u}\right\}$ different from x.

Case 5. $x \in K \times\left\{t_{u}\right\}, y \in(\operatorname{bd} K) \times L$, where $t_{u} \in \operatorname{bd} L$.
Now, if we are not in Case 1 or 4 , a suitable poidge is $\{x\} \cup(\{v\} \times I)$, where I is an arbitrary line-segment in L starting at t_{u}.

Let K be an $(n-1)$-dimensional convex body in \mathbb{R}^{n}, and $v \in \mathbb{R}^{n} \backslash K$. Put $v^{\prime}=\mathbb{p}_{\bar{K}}(v)$. We call the cone $C=\operatorname{conv}(\{v\} \cup K)$ right, if $v^{\prime} \in K$ and, for any pair of points $a, b \in \operatorname{bd} K$, $\angle a v b \leq \pi / 2$.

Figure 9: A conical surface.
The boundary of a right cone will be called here a conical surface. See Figure 9.

Theorem 5.8. Every conical surface is poidge-convex.
Proof. Let $S=\operatorname{bd} C$, where $C=\operatorname{conv}(\{v\} \cup K)$ is a right cone. We observe the preceding notation.

Let $x, y \in S$. We assume without loss of generality that $\|v-x\| \leq\|v-y\|$.
Case 1. $x, y \in K$.
If x, y are not both boundary points of K, then they clearly have the poidge-property (in K). Suppose now $x, y \in \operatorname{bd} K$. Since $\angle x v y \leq \pi / 2$ and $\|v-x\| \leq\|v-y\|, z=p_{\overline{v y}}(x)$ belongs to $v y$. Thus, $\{x\} \cup y z$ is a suitable poidge.

Case 2. The points v, x, y are collinear.
The point x is closer from v than y, possibly $x=v$.
Let $\left\{y^{\prime}\right\}=\overline{x y} \cap K$.
If $y^{\prime}=y$, then we consider the poidge $\{x\} \cup y z$, where $z=\mathbb{p}_{\bar{K}}(x)$.
If $y^{\prime} \neq y$, then take $u \in(\operatorname{bd} K) \backslash\left\{y^{\prime}\right\}$ so close to y^{\prime} that $\|v-u\|>\|v-y\|$. Then $\angle v u y<\pi / 2$, and the projection $z=\mathbb{p}_{\overline{v u}}(x)$ belongs to $v u$. So, we obtain the poidge $\{z\} \cup x y \subset S$.

Case 3. $x \in v x^{\prime}, y \in v y^{\prime}$, with $x^{\prime}, y^{\prime} \in \operatorname{bd} K$.
We may suppose $x \neq v, y \neq v$, and $x^{\prime} \neq y^{\prime}$, otherwise we are in Case 2. Since $\angle x v y \leq \pi / 2$, we have $z \in v y \backslash\{y\}$, where $z=\mathrm{p}_{\overline{v y}}(x)$. Thus, $\{x\} \cup y z$ is a suitable poidge.

Case 4. $x \in K, y \notin K$.
Let $z=\mathbb{p}_{\bar{K}}(y)$. If $z \neq x$, then $\{y\} \cup x z$ is a good poidge. If $z=x$, take any point $z^{\prime} \in K$ different from z. The poidge $\{y\} \cup z z^{\prime}$ will do it.

For results on right convexity in cylinders and cones, see [18].

5.4 Polyhedral surfaces

We have already seen that some tetrahedral surfaces are poidge-convex, some are not. The same is true in the larger frame of all polyhedral surfaces.

The star S_{x} at a vertex x of a polytope in \mathbb{R}^{n} is the union of all facets (i.e. $(n-1)$ dimensional faces) having x as a vertex. Two vertices of a polytope in \mathbb{R}^{n} will be called opposite if $H_{x y}$ and $H_{y x}$ are supporting hyperplanes of the polytope.

Recall that a compact set $M \subset \mathbb{R}^{n}$ is called ordinary, if $\operatorname{card}\left(S_{M} \cap M\right) \geq 3$. This is equivalent to the property that, for any pair of points $x, y \in M$, not all points of M different from x, y lie inside $S_{x y}$, i.e. $M \backslash$ int conv $S_{x y} \neq\{x, y\}$.

Now, we say that a polytope $P \in \mathbb{R}^{n}$ is extraordinary, if, for any pair of opposite vertices $x, y \in P$, not all points of $S_{x} \cup S_{y}$ different from x, y lie inside $S_{x y}$, i.e. $\left(S_{x} \cup S_{y}\right) \backslash$ int conv $S_{x y} \neq$ $\{x, y\}$.

Of course, every extraordinary polytope is ordinary, but not vice-versa.
Among the extraordinary polytopes we find all those admitting a circumscribed sphere, i.e. a sphere containing all vertices. The Platonic and the Archimedean Solids are well-known examples.

Theorem 5.9. Every extraordinary polytope in \mathbb{R}^{n} has a poidge-convex boundary.
Proof. By Lemma 5.5, we only need to verify the poidge-property for pairs of vertices x, y of the given extraordinary polytope P.

Figure 10: An ordinary, not extraordinary polytope.

Take $x, y \in V(P)$. Let H_{x} be a supporting hyperplane of P at x. Consider the hyperplane $H_{y} \ni y$ parallel to H_{x}.

If H_{y} is supporting P, then our hypothesis implies the existence of some point $z \in$ $\left(S_{x} \cup S_{y}\right) \backslash$ int conv $S_{x y}$ different from x and y. Assume without loss of generality that $z \in S_{x}$. Then $z x \cap S_{x y} \neq\{x\}$. If $z^{\prime} \in z x \cap S_{x y} \backslash\{x\}$, then $x z^{\prime} \subset S_{x}$, as $\{x\}$ is the kernel of the starshaped set S_{x}. Moreover, $\angle x z^{\prime} y=\pi / 2$. Thus, $\{y\} \cup x z^{\prime}$ is a suitable poidge.

If H_{y} is not supporting P, then both H_{y} and $S_{x y}$ are locally cutting bd P at y. Locally, the intersection $S_{x y} \cap S_{y}$ is a union of pieces of spheres of dimension $n-2$. Take a point z in $S_{x y} \cap S_{y}$ different from y. Then $\{x\} \cup y z$ is a suitable poidge.

Figure 10 shows an ordinary polytope which is not extraordinary.

Sometimes even the 1-skeleta of polytopes are poidge-convex.
In \mathbb{R}^{3}, let $\mathbf{T}_{1}, \mathbf{C}_{1}, \mathbf{O}_{1}, \mathbf{D}_{1}, \mathbf{I}_{1}$ be the boundary 1-complexes of the regular tetrahedron, cube, regular octahedron, regular dodecahedron, and regular icosahedron, respectively.

Theorem 5.10. $\mathbf{T}_{1}, \mathbf{C}_{1}, \mathbf{O}_{1}$ are poidge-convex, while $\mathbf{D}_{1}, \mathbf{I}_{1}$ are not.
Proof. We leave to the reader the first part of the statement. Consider \mathbf{D}_{1}. Let $a b c d e$ be a face of \mathbf{D}_{1}, and $a a^{\prime}$ an edge different from $a b$ and $e a$. Consider the points $x \in a a^{\prime}$ and $y \in b c$. Obviously, $H_{x y} \cap a a^{\prime}=\{x\}$, and $H_{y x} \cap b c=\{y\}$. Moreover, $x y \not \subset \mathbf{D}_{1}$. Hence, x, y have not the poidge-property.

For \mathbf{I}_{1}, the proof is similar.

6 Problems

We end the paper with two problems about the relationship between various \mathcal{F}-convexities.
Problem 6.1. Which poidge-convex sets are not rt-convex?
We mentioned (and it is easily verified) that tr-convexity implies poidge-convexity.
Problem 6.2. Which poidge-convex sets are not tr-convex?

Acknowledgements. The authors gratefully acknowledge financial support by NSF of China (11871192, 11471095) and the Program for Foreign experts of Hebei Province (No. 2019YX002A, 2020). The first author also thanks for the financial support of CSC (No. 201908130166) and the Graduates Innovation Funded Projects of Hebei Provincial Education Department (No. CXZZBS2019078). The third author is also indebted to the International Network GDRI Eco-Math for its support.

References

[1] R. Blind, G. Valette, T. Zamfirescu, Rectangular convexity, Geom. Dedicata, 9 (1980) 317-327.
[2] K. Böröczky, Jr., Rectangular convexity of convex domains of constant width, Geom. Dedicata, 34 (1990) 13-18.
[3] M. Breen, Characterizing certain staircase convex sets in \mathbb{R}^{n}, Beitr. Algebra Geom., 51 (2010) 251-261.
[4] M. Breen, Generating a staircase starshaped set and its kernel in \mathbb{R}^{3} from certain staircase convex subsets, Beitr. Algebra Geom., 53 (2012) 515-528.
[5] M. Breen, Suitable families of boxes and kernels of staircase starshaped sets in \mathbb{R}^{n}, Aequat. Math., 87 (2014) 43-52.
[6] M. Breen, Staircase convex results for a certain class of orthogonal polytopes, Aequat. Math., 89 (2015) 1213-1221.
[7] A. M. Bruckner, J. B. Bruckner, Generalized convex kernels, Israel J. Math., 2 (1964) 27-32.
[8] H. Buseman, Convex Surfaces, New York: Interscience 1958.
[9] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959) 51-63.
[10] E. Magazanik, M. A. Perles, Staircase connected sets, Discrete Comp. Geom., 37 (2007) 587-599.
[11] E. Magazanik, M. A. Perles, Generalized convex kernels of simply connected L_{n} sets in the plane, Israel J. Math., 160 (2007) 157-171.
[12] L. Yuan, T. Zamfirescu, Right triple convex completion, J. Convex Anal., 22 (2015) 291-301.
[13] L. Yuan, T. Zamfirescu, Right triple convexity, J. Convex Anal., 23 (2016) 1219-1246.
[14] L. Yuan, T. Zamfirescu, Selfishness of convex bodies, J. Nonlinear Convex Anal., 18 (2017) 525-534.
[15] L. Yuan, T. Zamfirescu, Y. Zhang, Isosceles triple convexity, Carpathian J. Math., 33 (2017) 127-139.
[16] T. Zamfirescu, Inscribed and circumscribed circles to convex curves, Proc. Amer. Math. Soc. 80 (1980) 455-457.
[17] T. Zamfirescu, Typical starshaped sets, Aequationes Math. 36 (1988) 188-200.
[18] T. Zamfirescu, Right convexity, J. Convex Anal., 21 (2014) 253-260.

Bo Wang, Liping Yuan

School of Mathematical Sciences,
Hebei Normal University,
050024 Shijiazhuang, P. R. China.
and
Hebei Key Laboratory of Computational Mathematics and Applications, 050024 Shijiazhuang, P. R. China.
bow6666@163.com, lpyuan@hebtu.edu.cn

Tudor Zamfirescu

Fakultät für Mathematik, Technische Universität Dortmund
44221 Dortmund, Germany
and
Roumanian Academy, Bucharest, Roumania
and
School of Mathematical Sciences,
Hebei Normal University,
050024 Shijiazhuang, P.R. China.
tudor.zamfirescu@mathematik.uni-dortmund.de

[^0]: * Corresponding author.

