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Abstract: A cage is the 1-skeleton of a convex polytope in ℝ3. A cage is said to hold a set if the set cannot be
continuously moved to a distant location, remaining congruent to itself and disjoint from the cage. In how
many positions can (compact 2-dimensional) unit discs be held by a tetrahedral cage?We completely answer
this question for all tetrahedra.
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1 Introduction
A cage is the 1-skeleton of a (convex) polytope in ℝ3. If P is the polytope, the cage is denoted by cage(P).
A cage G is said to hold a compact set K disjoint from G, if no rigid continuous motion can bring K in a
position far away without meeting G on its way. A compact 2-dimensional ball inℝ3 will be called a disc. The
subject of holding (3-dimensional) balls in cages has been treated by Coxeter [3], Besicovitch [2], Aberth [1]
and Valette [4]. The first two authors proved that there are tetrahedral cages holding n discs, for every n ≤ 16
except for n ∈ {7, 9, 11, 13, 14, 15}, and there is no such cage for any other n. In this paper the discs to be
held are all of the same size. The question we answer, asked in [5], is the same, but in the new context. It is
about the number of positions in which the unit disc can be held by tetrahedral cages. A priori we expect to
have more exceptions. We shall see that the number of exceptions is a little larger, indeed!

For distinct x, y ∈ ℝ3, let xy be the line through x, y and xy the line-segment from x to y. We denote by
Πxy the plane through x orthogonal to xy, and by Π+xy the open half-space containing y determined by Πxy.
For non-collinear x, y, z ∈ ℝ3, let C(xyz) be the circumscribed circle of the triangle xyz in its plane xyz, and
oxyz its centre.

Following [5], for any cage G, let D(G) be the space of all discs held by G, endowed with the Pompeiu–
Hausdorffmetric. LetDr(G)be the set of all discs inD(G)of radius at least r. Assume that, for somecomponent
E of Dr(G) and any number s > r, Ds(G) ∩ E is connected or empty. We call such a component E an end-
component of D(G). If n is the maximal number of pairwise disjoint end-components ofD(G), we say that G
holds n discs. In fact, intuitively, G does not hold n pairwise disjoint discs simultaneously; merely there are n
positions (ways) inwhich a disc can be held. Let the componentE ofDr(G) be an end-component ofD(G). Put
σ(E) = sup{s : Ds(G) ∩ E ̸= 0}. Choose an increasing sequence {sn}∞n=1 of real numbers satisfying sn > r and
lim
n→∞

sn = σ(E). Consider a disc Dn ∈ Dsn (G) for each n. If {Dn}∞n=1 converges to some disc D(E) independent
of the choice of the numbers sn and the discs Dn, we call D(E) the limit disc of E. Several end-components
may have the same limit disc. If the limit disc of an end-component E lies in the plane of a face F of conv G,
we say that G holds a disc at the face F. For each end-component, we have a disc held, even if the limit discs
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coincide. So, a cage may hold several discs at the same face. Also if a face F is not triangular, several distinct
limit discs can be coplanar with F.

Ifwebriefly say that the cageG holds n unit discs, thismeans thatG holds n discs, i.e. themaximal number
of pairwise disjoint end-components is n, and σ(E) does not depend on the chosen end-component E.
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Figure 1: A unit disc held by a regular tetrahedral cage.

Figure 1 illustrates one of the 16 positions in which a disc can be held by a regular tetrahedral cage. For
other tetrahedra the number of positions can bemuch smaller. It is relevantwhether the disc partly lies below
some edge, as in Figure 1; for such a position it is further needed that ∠dao < π/2 where o = oabc, in order
for the disc to be held, as one easily verifies. Such arguments will be used in the following sections.

2 Auxiliary material
We present here several results preparing our main result in the next section.

Lemma 1 ([5]). If for a, b, c, x, o ∈ ℝ3, ∠axb ≤ π/2, ∠cxa < π/2 and o lies in the relative interior of bxc, then
∠axo < π/2.
Lemma 2 ([5]). If a polytopal cage holds at least one disc at some triangular face, then that triangle is acute.

Lemma 3 ([5]). If a tetrahedral cage has an acute face, then it has one, two, or four discs held at that face. More
precisely, suppose that T = abcd is a tetrahedron with the acute face abc.

i) If ∠daoabc < π/2, ∠dboabc ≥ π/2 and ∠dcoabc ≥ π/2, then cage(T) holds one disc at the face abc.
ii) If ∠daoabc < π/2, ∠dboabc < π/2 and ∠dcoabc ≥ π/2, then cage(T) holds two discs at abc.
iii) If ∠daoabc < π/2, ∠dboabc < π/2 and ∠dcoabc < π/2, then cage(T) holds four discs at abc.
For a proof of Lemma 3, see [5], proof of Lemma 2.3.

Lemma 4 ([5]). It is not possible that at some face precisely one disc is held, and at at most one face no disc is
held.

Proof. Suppose there exists at most one face at which no disc is held. Then at most one of the 12 angles (of
the 4 triangles), say acd, is non-acute. It follows that the triangles abc, bcd and abd are acute, and all angles
at a, b, d are acute, too.

By Lemma 1, ∠oabcad < π/2 and ∠oabcbd < π/2; thus, at least two discs are held at abc. Similarly, at
least two discs are held at bcd. At abd exactly four discs are held, as all cage angles at a, b, d are acute.

At acd, either 0 or 4 discs are held. Hence, at no face exactly one disc is held. 2

Lemma 4 has already been used inside the proof of Theorem 2.7 in [5].
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Theorem 1 ([5]). There are tetrahedral cages holding n discs for every n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 16}, and
there is no such cage for any other n.

Lemma 5. If all faces of a tetrahedral cage are acute triangles, then the cage holds 16 discs. This means that, if
the number of discs held at each face is positive, then that number is 4 for every face.

Proof. Assume that all faces of the tetrahedral cage cage(abcd) are acute triangles. We have ∠abd < π/2,
∠abc < π/2 and ∠cbd < π/2. Using Lemma 1 we get ∠abobcd < π/2. Analogously, ∠acobcd < π/2 and
∠adobcd < π/2. Thus, the face bcd holds 4 discs.

Analogously, the faces abc, acd and abd hold 4 discs each. 2

Lemma 6. Let C ⊂ ℝ3 be a circle and let H+ ⊂ ℝ3 be an open half-space. If a, b ∈ C ∩ H+, then at least one of
the two arcs determined by a, b on C lies in H+.

The proof is straightforward.

3 Tetrahedral cages for unit discs
Our main result is the following.

Theorem 2. There are tetrahedral cages holding n unit discs for every n ∈ {1, 2, 3, 4, 6, 8, 12, 16}, and there
is no such cage for any other n.

Proof. The cases n = 0, 1, 2, 3, 4 are already mentioned and settled in [5]. For example, for n = 0 just take a
tetrahedral cage, all faces of which are obtuse triangles. By Theorem 1, no n ∈ {7, 9, 11, 13, 14, 15} can be
realized. So, it remains to consider n ∈ {5, 6, 8, 10, 12, 16}.

Case n = 5. If a tetrahedral cage T has an acute face, then it has one, two, or four discs held at that face,
by Lemma 3. In order to obtain exactly 5 unit discs held by T, there are 3 possibilities for the number of discs
held at the four faces, namely, 5 = 0 + 1 + 2 + 2, 5 = 1 + 1 + 1 + 2, 5 = 0 + 0 + 1 + 4. By Lemma 4, the first two
possibilities cannot be realized.
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Figure 2: n = 5.

Now we discuss the Case 5 = 0 + 0 + 1 + 4. Assume that a tetrahedral cage T holds 5 unit discs in this
way. We assume without loss of generality that the face abc holds one unit disc, and the face abd four unit
discs. Let o1 be the centre of C(abc), and o2 the centre of C(abd). Regarding abc, we have ∠dao1 ≥ π/2,
∠dbo1 ≥ π/2 and ∠dco1 < π

2 (note that the latter inequality is imposed by the fact that d belongs to the torus
Θ obtained by rotating C(abc) about ab, and Θ is tangent to Πco1 , while the other inequalities are required by
Lemma 4). Regarding abd, we have ∠cao2 < π/2, ∠cbo2 < π/2 and ∠cdo2 < π/2, by Lemma 4. See Figure 2.

The two faces have the commonedge ab. Rotate abc about ab decreasing the dihedral angle between abc
and abd, until it reaches the plane abd. Let abc be its new position. By symmetry, ∠cao2 = ∠cao1 < π/2
and∠cbo2 = ∠cbo1 < π/2. The points a, b, c, d are concyclic. IfA is the arc of C(abd) from a to b containing
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d, then c ∈ A, since both triangles abc and abd are acute. Thus, d lies in one of the two subarcsac,bc
of A, say in the second. The inequalities just obtained show that c ∈ H+ao1 . Since ∠bao1 < π/2, too, both b
and c lie in H+ao1 . Lemma 6 together with a ∈ Hao1 imply bc ⊂ H+ao1 . Hence d ∈ H+ao1 , which contradicts
∠dao1 ≥ π/2.

Case n = 6. Let o1 be the centre of C(abc), o2 the centre of C(abd), ∠bao1 = ∠bao2 = ∠abo1 = ∠abo2 =
5π/36, ∠o2ad = ∠o2da = π/9, ∠o2bd = ∠o2db = π/4, and ∠o1ac = ∠o1ca = ∠o1bc = ∠o1cb = 13π/72.
Rotate slightly abd about ab up to a new position abd; now, let o2 be the centre of C(abd). See Figure 3.
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Figure 3: n = 6.

Because ∠dao1 = 7π/18 < π/2, ∠dbo1 = 19π/36 > π/2, ∠dco1 < π/2; ∠cao2 = ∠cbo2 = 11π/24 < π/2,
∠cdo2 < π/2, we have ∠dao1 < π/2, ∠dbo1 > π/2, ∠dco1 < π/2; also, ∠cao2 = ∠cbo2 < π/2 and
∠cdo2 < π/2. There are precisely two unit discs held by cage(abcd) at abc, and four unit discs held at
abd. Since acd and bcd are obtuse triangles, no discs are held there. Thus, this tetrahedral cage holds 6
unit discs.

Case n = 8. The tetrahedral cage constructed in [5] already holds 8 unit discs.
Case n = 10. In order to obtain exactly 10 unit discs held by T, there are 3 possibilities for the number of

discs held at the four faces, namely, 10 = 1 + 1 + 4 + 4, 10 = 2 + 2 + 2 + 4, 10 = 0 + 2 + 4 + 4. By Lemma 5,
the first two cases are in fact impossible.

Assume that a tetrahedral cage T holds10unit discs such that three faces of T do hold discs, and the radii
of their circumscribed circles are equal. The fourth face does not hold any disc. Without loss of generality,
assume that the triangle bcd is not acute, say ∠cbd ≥ π/2.

Let o1 be the centre of C(abc), o2 the centre of C(abd) and o3 the centre of C(acd). First assume that
∠cbd = π/2. We have ∠bca < π/2, ∠bcd < π/2, ∠acd < π/2; by Lemma 1, ∠bco3 < π/2. Analogously,
∠bao3 < π/2, ∠bdo3 < π/2. The face acd holds 4 unit discs. Analogously, the faces abc and abd hold 4 unit
discs each. This is too much! Hence ∠cbd > π/2.

Because all angles at a, c, d are acute, four unit discs are held at acd. Regarding abc, we have ∠dao1 <
π/2 and ∠dco1 < π/2, whence at least two unit discs are held at abc. The same is true regarding abd. In
order to obtain exactly 10 unit discs held by T, there are 2 possibilities: abc holds two unit discs and abd
four, or vice-versa.

Without loss of generality, assume that the first case is true. So, T holds two discs at abc. Since all angles
at a and c are acute, ∠dao1 < π/2 and dco1 < π/2; hence, ∠dbo1 ≥ π/2. Rotate abd about ab up to abd1
such that d1 is on abc, separated from c by ab. See Figure 4. Rotate acd about ac up to abd2 such that d2 is
on abc, separated from b by ac. Let o1 be the centre of C(abd1), o2 the centre of C(acd2), ∠bao1 = ∠bao1 =∠abo1 = ∠abo1 = α, ∠o1ad1 = ∠o1d1a = ∠o2ad2 = ∠o2d2a = β. Then ∠o1d1b = ∠o1bd1 = π

2 − α − β,∠o1ac = ∠o1ca = ∠o2ac = ∠o2ca = γ, ∠o1bc = ∠o1cb = π
2 − α − γ, and ∠o2cd2 = ∠o2d2c = π

2 − β − γ.
We have ‖b − d1‖ = 2 cos( π2 − α − β) = 2 sin(α + β), ‖b − c‖ = 2 cos( π2 − α − γ) = 2 sin(α + γ), ‖c − d2‖ =

2 cos( π2 − β − γ) = 2 sin(β + γ) and eventually
cos∠cbd = ‖b − d1‖2 + ‖b − c‖2 − ‖c − d2‖22‖b − d1‖‖b − c‖ .
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Figure 4: n = 10.

Because cos∠cbd < 0, we must have

sin2(α + β) + sin2(α + γ) < sin2(β + γ). (1)

But ∠dbo1 ≥ π/2, whence ∠d1bo1 > π/2. We have ∠d1bo1 = ∠d1bo1 + ∠o1bo1 = π
2 − α − β + 2α > π

2 . Hence
α > β, which yields sin2(α + γ) > sin2(β + γ), contradicting equation (1).

In conclusion, it is impossible for the tetrahedral cage T to hold 10 unit discs.
Case n = 12. We construct a suitable cage cage(abcd). Consider the triangle abd1 obtained from abd

exactly like in the case n = 10. Analogously, consider bcd2.
Let o be the centre of C(abc), o1 the centre of C(abd1), o2 the centre of C(bcd2). See Figure 5. Then o is

symmetric with o1 about ab, o is symmetric with o2 about bc; take ∠bao = ∠abo = ∠bao1 = ∠abo1 = π/60,
∠o1ad1 = ∠o1d1a = 13π/36, whence ∠o1bd1 = ∠o1d1b = ∠o2bd2 = ∠o2d2b = 11π/90. Also, take ∠oac =
∠oca = π/6. It follows that ∠obc = ∠ocb = ∠o2bc = ∠o2cb = 19π/60 and ∠o2cd2 = ∠o2d2c = 11π/180.
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Figure 5: n = 12.
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Then ‖a − d‖ = ‖a − d1‖ = 2 cos 13π
36 , ‖c − d‖ = ‖c − d2‖ = 2 cos 11π

180 and ‖a − c‖ = 2 cos π
6 . We obtain

cos∠dac = ‖ a − d ‖2 + ‖ a − c ‖2 − ‖ c − d ‖22 ‖ a − d ‖‖ a − c ‖ < 0,
which implies that dac is an obtuse triangle. This cage holds 12 unit discs.

Case n = 16. This is clear. 2

One can wish to have a characterization of all tetrahedral cages holding n unit discs, and this for every n
for which they exist. While this is easy to accomplish for very small n or n = 16, in other cases it seems more
complicated. We choose to leave this to the enthusiastic reader.

4 A pentahedral cage for unit discs
The smallest n for which there are no tetrahedral cages holding n discs is 7, by Theorem 2.7 in [5]. This
prompted the authors of [5] to look for a pentahedral cage holding 7 discs. Theorem 3.5 in [5] presents such a
cage. But, based on that example, we cannot find a cage holding 7 unit discs. So, the natural question arises
whether a cage holding 7 unit discs does or does not exist.

Theorem 3. There exists a quadrilateral pyramid such that the associated cage holds 7 unit discs.

Proof. We consider the unit circle 𝕊1 ⊂ ℝ2 = P and take on it the points a, b, c, d such that λ(ab) = (π/2)+3ε,
λ(bc) = (π/2) − ε, λ(cd) = (π/2) − ε, λ(da) = (π/2) − ε, where λ denotes length and ε is small.

Take e ∈ ac, at distance ε from c. The triangles eab, ebc, ecd, eda are obtuse. By choosing e ∈ ℝ3 \P
above P and close enough to e, the triangles eab, ebc, ecd, eda will be obtuse, too. Hence, cage(abcde)
holds no disc at any triangular face. How many discs are held at abcd?

First note that ∠ea0 < π/2, ∠eb0 < π/2, ∠ec0 < π/2, ∠ed0 < π/2, where 0 is the origin of ℝ3. Conse-
quently, the discs held are: one above thewhole abcd, one below ab and above bc, cd, and da, one below bc
and above the other three, one below cd and above the other three, one below da and above the other three,
one below bc and cd and above the other two, and one below cd and da and above the other two. These are
the 7 unit discs held by cage(abcde). 2
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