Liping Yuan*, Tudor Zamfirescu and Yanxue Zhang

Tetrahedral cages for unit discs

https://doi.org/10.1515/advgeom-2021-0016. Received 4 May, 2019; revised 7 December, 2019

Abstract

A cage is the 1 -skeleton of a convex polytope in \mathbb{R}^{3}. A cage is said to hold a set if the set cannot be continuously moved to a distant location, remaining congruent to itself and disjoint from the cage. In how many positions can (compact 2-dimensional) unit discs be held by a tetrahedral cage? We completely answer this question for all tetrahedra.

Keywords: Tetrahedra, tetrahedral cage, unit disc.
2010 Mathematics Subject Classification: 52B10

Communicated by: E. Bannai

1 Introduction

A cage is the 1-skeleton of a (convex) polytope in \mathbb{R}^{3}. If P is the polytope, the cage is denoted by cage (P). A cage G is said to hold a compact set K disjoint from G, if no rigid continuous motion can bring K in a position far away without meeting G on its way. A compact 2 -dimensional ball in \mathbb{R}^{3} will be called a disc. The subject of holding (3-dimensional) balls in cages has been treated by Coxeter [3], Besicovitch [2], Aberth [1] and Valette [4]. The first two authors proved that there are tetrahedral cages holding n discs, for every $n \leq 16$ except for $n \in\{7,9,11,13,14,15\}$, and there is no such cage for any other n. In this paper the discs to be held are all of the same size. The question we answer, asked in [5], is the same, but in the new context. It is about the number of positions in which the unit disc can be held by tetrahedral cages. A priori we expect to have more exceptions. We shall see that the number of exceptions is a little larger, indeed!

For distinct $x, y \in \mathbb{R}^{3}$, let $\overline{x y}$ be the line through x, y and $x y$ the line-segment from x to y. We denote by $\Pi_{x y}$ the plane through x orthogonal to $\overline{x y}$, and by $\Pi_{x y}^{+}$the open half-space containing y determined by $\Pi_{x y}$. For non-collinear $x, y, z \in \mathbb{R}^{3}$, let $C(x y z)$ be the circumscribed circle of the triangle $x y z$ in its plane $\overline{x y z}$, and $o_{x y z}$ its centre.

Following [5], for any cage G, let $\mathcal{D}(G)$ be the space of all discs held by G, endowed with the PompeiuHausdorff metric. Let $\mathcal{D}_{r}(G)$ be the set of all discs in $\mathcal{D}(G)$ of radius at least r. Assume that, for some component \mathcal{E} of $\mathcal{D}_{r}(G)$ and any number $s>r, \mathcal{D}_{s}(G) \cap \mathcal{E}$ is connected or empty. We call such a component \mathcal{E} an endcomponent of $\mathcal{D}(G)$. If n is the maximal number of pairwise disjoint end-components of $\mathcal{D}(G)$, we say that G holds n discs. In fact, intuitively, G does not hold n pairwise disjoint discs simultaneously; merely there are n positions (ways) in which a disc can be held. Let the component \mathcal{E} of $\mathcal{D}_{r}(G)$ be an end-component of $\mathcal{D}(G)$. Put $\sigma(\mathcal{E})=\sup \left\{s: \mathcal{D}_{s}(G) \cap \mathcal{E} \neq \emptyset\right\}$. Choose an increasing sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of real numbers satisfying $s_{n}>r$ and $\lim _{n \rightarrow \infty} s_{n}=\sigma(\mathcal{E})$. Consider a disc $D_{n} \in \mathcal{D}_{s_{n}}(G)$ for each n. If $\left\{D_{n}\right\}_{n=1}^{\infty}$ converges to some disc $D(\mathcal{E})$ independent of the choice of the numbers s_{n} and the discs D_{n}, we call $D(\mathcal{E})$ the limit disc of \mathcal{E}. Several end-components may have the same limit disc. If the limit disc of an end-component \mathcal{E} lies in the plane of a face F of conv G, we say that G holds a disc at the face F. For each end-component, we have a disc held, even if the limit discs

[^0]coincide. So, a cage may hold several discs at the same face. Also if a face F is not triangular, several distinct limit discs can be coplanar with F.

If we briefly say that the cage G holds n unit discs, this means that G holds n discs, i.e. the maximal number of pairwise disjoint end-components is n, and $\sigma(\mathcal{E})$ does not depend on the chosen end-component \mathcal{E}.

Figure 1: A unit disc held by a regular tetrahedral cage.

Figure 1 illustrates one of the 16 positions in which a disc can be held by a regular tetrahedral cage. For other tetrahedra the number of positions can be much smaller. It is relevant whether the disc partly lies below some edge, as in Figure 1; for such a position it is further needed that $\angle d a o<\pi / 2$ where $o=o_{a b c}$, in order for the disc to be held, as one easily verifies. Such arguments will be used in the following sections.

2 Auxiliary material

We present here several results preparing our main result in the next section.
Lemma 1 ([5]). If for $a, b, c, x, o \in \mathbb{R}^{3}, \angle a x b \leq \pi / 2, \angle c x a<\pi / 2$ and o lies in the relative interior of bxc, then $\angle a x o<\pi / 2$.

Lemma 2 ([5]). If a polytopal cage holds at least one disc at some triangular face, then that triangle is acute.
Lemma 3 ([5]). If a tetrahedral cage has an acute face, then it has one, two, or four discs held at that face. More precisely, suppose that $T=a b c d$ is a tetrahedron with the acute face $a b c$.
i) If $\angle d a o_{a b c}<\pi / 2, \angle d b o_{a b c} \geq \pi / 2$ and $\angle d c o_{a b c} \geq \pi / 2$, then cage (T) holds one disc at the face abc.
ii) If $\angle d a o_{a b c}<\pi / 2, \angle d b o_{a b c}<\pi / 2$ and $\angle d c o_{a b c} \geq \pi / 2$, then cage(T) holds two discs at abc.
iii) If $\angle d a o_{a b c}<\pi / 2, \angle d b o_{a b c}<\pi / 2$ and $\angle d c o_{a b c}<\pi / 2$, then cage(T) holds four discs at abc.

For a proof of Lemma 3, see [5], proof of Lemma 2.3.
Lemma 4 ([5]). It is not possible that at some face precisely one disc is held, and at at most one face no disc is held.

Proof. Suppose there exists at most one face at which no disc is held. Then at most one of the 12 angles (of the 4 triangles), say $a c d$, is non-acute. It follows that the triangles $a b c, b c d$ and $a b d$ are acute, and all angles at a, b, d are acute, too.

By Lemma 1, $\angle o_{a b c} a d<\pi / 2$ and $\angle o_{a b c} b d<\pi / 2$; thus, at least two discs are held at $a b c$. Similarly, at least two discs are held at $b c d$. At $a b d$ exactly four discs are held, as all cage angles at a, b, d are acute.

At acd, either 0 or 4 discs are held. Hence, at no face exactly one disc is held.
Lemma 4 has already been used inside the proof of Theorem 2.7 in [5].

Theorem 1 ([5]). There are tetrahedral cages holding n discs for every $n \in\{1,2,3,4,5,6,8,10,12,16\}$, and there is no such cage for any other n.

Lemma 5. If all faces of a tetrahedral cage are acute triangles, then the cage holds 16 discs. This means that, if the number of discs held at each face is positive, then that number is 4 for every face.

Proof. Assume that all faces of the tetrahedral cage cage $(a b c d)$ are acute triangles. We have $\angle a b d<\pi / 2$, $\angle a b c<\pi / 2$ and $\angle c b d<\pi / 2$. Using Lemma 1 we get $\angle a b o_{b c d}<\pi / 2$. Analogously, $\angle a c o_{b c d}<\pi / 2$ and $\angle a d o_{b c d}<\pi / 2$. Thus, the face $b c d$ holds 4 discs.

Analogously, the faces $a b c, a c d$ and $a b d$ hold 4 discs each.
Lemma 6. Let $C \subset \mathbb{R}^{3}$ be a circle and let $H^{+} \subset \mathbb{R}^{3}$ be an open half-space. If $a, b \in C \cap H^{+}$, then at least one of the two arcs determined by a, b on C lies in H^{+}.

The proof is straightforward.

3 Tetrahedral cages for unit discs

Our main result is the following.
Theorem 2. There are tetrahedral cages holding n unit discs for every $n \in\{1,2,3,4,6,8,12,16\}$, and there is no such cage for any other n.

Proof. The cases $n=0,1,2,3,4$ are already mentioned and settled in [5]. For example, for $n=0$ just take a tetrahedral cage, all faces of which are obtuse triangles. By Theorem 1, no $n \in\{7,9,11,13,14,15\}$ can be realized. So, it remains to consider $n \in\{5,6,8,10,12,16\}$.

Case $n=5$. If a tetrahedral cage T has an acute face, then it has one, two, or four discs held at that face, by Lemma 3. In order to obtain exactly 5 unit discs held by T, there are 3 possibilities for the number of discs held at the four faces, namely, $5=0+1+2+2,5=1+1+1+2,5=0+0+1+4$. By Lemma 4, the first two possibilities cannot be realized.

Figure 2: $n=5$.

Now we discuss the Case $5=0+0+1+4$. Assume that a tetrahedral cage T holds 5 unit discs in this way. We assume without loss of generality that the face $a b c$ holds one unit disc, and the face $a b d$ four unit discs. Let o_{1} be the centre of $C(a b c)$, and o_{2} the centre of $C(a b d)$. Regarding $a b c$, we have $\angle d a o_{1} \geq \pi / 2$, $\angle d b o_{1} \geq \pi / 2$ and $\angle d c o_{1}<\frac{\pi}{2}$ (note that the latter inequality is imposed by the fact that d belongs to the torus Θ obtained by rotating $C(a b c)$ about $\overline{a b}$, and Θ is tangent to $\Pi_{c o_{1}}$, while the other inequalities are required by Lemma 4). Regarding $a b d$, we have $\angle c a o_{2}<\pi / 2, \angle c b o_{2}<\pi / 2$ and $\angle c d o_{2}<\pi / 2$, by Lemma 4. See Figure 2.

The two faces have the common edge $a b$. Rotate $a b c$ about $\overline{a b}$ decreasing the dihedral angle between $a b c$ and $a b d$, until it reaches the plane $\overline{a b d}$. Let $a b c^{\prime}$ be its new position. By symmetry, $\angle c a o_{2}=\angle c^{\prime} a o_{1}<\pi / 2$ and $\angle c b o_{2}=\angle c^{\prime} b o_{1}<\pi / 2$. The points a, b, c^{\prime}, d are concyclic. If A is the arc of $C(a b d)$ from a to b containing
d, then $c^{\prime} \in A$, since both triangles $a b c$ and $a b d$ are acute. Thus, d lies in one of the two subarcs $\overparen{a c^{\prime}}, \widehat{b c^{\prime}}$ of A, say in the second. The inequalities just obtained show that $c^{\prime} \in H_{a o_{1}}^{+}$. Since $\angle b a o_{1}<\pi / 2$, too, both b and c^{\prime} lie in $H_{a o_{1}}^{+}$. Lemma 6 together with $a \in H_{a o_{1}}$ imply $\overparen{b c^{\prime}} \subset H_{a o_{1}}^{+}$. Hence $d \in H_{a o_{1}}^{+}$, which contradicts $\angle d a o_{1} \geq \pi / 2$.

Case $n=6$. Let o_{1} be the centre of $C(a b c), o_{2}$ the centre of $C(a b d), \angle b a o_{1}=\angle b a o_{2}=\angle a b o_{1}=\angle a b o_{2}=$ $5 \pi / 36, \angle o_{2} a d=\angle o_{2} d a=\pi / 9, \angle o_{2} b d=\angle o_{2} d b=\pi / 4$, and $\angle o_{1} a c=\angle o_{1} c a=\angle o_{1} b c=\angle o_{1} c b=13 \pi / 72$. Rotate slightly $a b d$ about $\overline{a b}$ up to a new position $a b d^{\prime}$; now, let o_{2}^{\prime} be the centre of $C\left(a b d^{\prime}\right)$. See Figure 3.

Figure 3: $n=6$.

Because $\angle d a o_{1}=7 \pi / 18<\pi / 2, \angle d b o_{1}=19 \pi / 36>\pi / 2, \angle d c o_{1}<\pi / 2 ; \angle c a o_{2}=\angle c b o_{2}=11 \pi / 24<\pi / 2$, $\angle c d o_{2}<\pi / 2$, we have $\angle d^{\prime} a o_{1}<\pi / 2, \angle d^{\prime} b o_{1}>\pi / 2, \angle d^{\prime} c o_{1}<\pi / 2$; also, $\angle c a o_{2}^{\prime}=\angle c b o_{2}^{\prime}<\pi / 2$ and $\angle c d^{\prime} o_{2}^{\prime}<\pi / 2$. There are precisely two unit discs held by cage $\left(a b c d^{\prime}\right)$ at $a b c$, and four unit discs held at $a b d^{\prime}$. Since $a c d^{\prime}$ and $b c d^{\prime}$ are obtuse triangles, no discs are held there. Thus, this tetrahedral cage holds 6 unit discs.

Case $n=8$. The tetrahedral cage constructed in [5] already holds 8 unit discs.
Case $n=10$. In order to obtain exactly 10 unit discs held by T, there are 3 possibilities for the number of discs held at the four faces, namely, $10=1+1+4+4,10=2+2+2+4,10=0+2+4+4$. By Lemma 5, the first two cases are in fact impossible.

Assume that a tetrahedral cage T holds 10 unit discs such that three faces of T do hold discs, and the radii of their circumscribed circles are equal. The fourth face does not hold any disc. Without loss of generality, assume that the triangle $b c d$ is not acute, say $\angle c b d \geq \pi / 2$.

Let o_{1} be the centre of $C(a b c), o_{2}$ the centre of $C(a b d)$ and o_{3} the centre of $C(a c d)$. First assume that $\angle c b d=\pi / 2$. We have $\angle b c a<\pi / 2, \angle b c d<\pi / 2, \angle a c d<\pi / 2$; by Lemma $1, \angle b c o_{3}<\pi / 2$. Analogously, $\angle b a o_{3}<\pi / 2, \angle b d o_{3}<\pi / 2$. The face $a c d$ holds 4 unit discs. Analogously, the faces $a b c$ and $a b d$ hold 4 unit discs each. This is too much! Hence $\angle c b d>\pi / 2$.

Because all angles at a, c, d are acute, four unit discs are held at $a c d$. Regarding $a b c$, we have $\angle d a o_{1}<$ $\pi / 2$ and $\angle d c o_{1}<\pi / 2$, whence at least two unit discs are held at $a b c$. The same is true regarding $a b d$. In order to obtain exactly 10 unit discs held by T, there are 2 possibilities: $a b c$ holds two unit discs and $a b d$ four, or vice-versa.

Without loss of generality, assume that the first case is true. So, T holds two discs at $a b c$. Since all angles at a and c are acute, $\angle d a o_{1}<\pi / 2$ and $d c o_{1}<\pi / 2$; hence, $\angle d b o_{1} \geq \pi / 2$. Rotate $a b d$ about $\overline{a b}$ up to $a b d_{1}$ such that d_{1} is on $\overline{a b c}$, separated from c by $\overline{a b}$. See Figure 4. Rotate $a c d$ about $\overline{a c}$ up to $a b d_{2}$ such that d_{2} is on $\overline{a b c}$, separated from b by $\overline{a c}$. Let o_{1}^{\prime} be the centre of $C\left(a b d_{1}\right), o_{2}^{\prime}$ the centre of $C\left(a c d_{2}\right), \angle b a o_{1}^{\prime}=\angle b a o_{1}=$ $\angle a b o_{1}^{\prime}=\angle a b o_{1}=\alpha, \angle o_{1}^{\prime} a d_{1}=\angle o_{1}^{\prime} d_{1} a=\angle o_{2}^{\prime} a d_{2}=\angle o_{2}^{\prime} d_{2} a=\beta$. Then $\angle o_{1}^{\prime} d_{1} b=\angle o_{1}^{\prime} b d_{1}=\frac{\pi}{2}-\alpha-\beta$, $\angle o_{1} a c=\angle o_{1} c a=\angle o_{2}^{\prime} a c=\angle o_{2}^{\prime} c a=\gamma, \angle o_{1} b c=\angle o_{1} c b=\frac{\pi}{2}-\alpha-\gamma$, and $\angle o_{2}^{\prime} c d_{2}=\angle o_{2}^{\prime} d_{2} c=\frac{\pi}{2}-\beta-\gamma$.

We have $\left\|b-d_{1}\right\|=2 \cos \left(\frac{\pi}{2}-\alpha-\beta\right)=2 \sin (\alpha+\beta),\|b-c\|=2 \cos \left(\frac{\pi}{2}-\alpha-\gamma\right)=2 \sin (\alpha+\gamma),\left\|c-d_{2}\right\|=$ $2 \cos \left(\frac{\pi}{2}-\beta-\gamma\right)=2 \sin (\beta+\gamma)$ and eventually

$$
\cos \angle c b d=\frac{\left\|b-d_{1}\right\|^{2}+\|b-c\|^{2}-\left\|c-d_{2}\right\|^{2}}{2\left\|b-d_{1}\right\|\|b-c\|}
$$

Figure 4: $n=10$.

Because $\cos \angle c b d<0$, we must have

$$
\begin{equation*}
\sin ^{2}(\alpha+\beta)+\sin ^{2}(\alpha+\gamma)<\sin ^{2}(\beta+\gamma) \tag{1}
\end{equation*}
$$

But $\angle d b o_{1} \geq \pi / 2$, whence $\angle d_{1} b o_{1}>\pi / 2$. We have $\angle d_{1} b o_{1}=\angle d_{1} b o_{1}^{\prime}+\angle o_{1}^{\prime} b o_{1}=\frac{\pi}{2}-\alpha-\beta+2 \alpha>\frac{\pi}{2}$. Hence $\alpha>\beta$, which yields $\sin ^{2}(\alpha+\gamma)>\sin ^{2}(\beta+\gamma)$, contradicting equation (1).

In conclusion, it is impossible for the tetrahedral cage T to hold 10 unit discs.
Case $n=12$. We construct a suitable cage cage $(a b c d)$. Consider the triangle $a b d_{1}$ obtained from $a b d$ exactly like in the case $n=10$. Analogously, consider $b c d_{2}$.

Let o be the centre of $C(a b c), o_{1}$ the centre of $C\left(a b d_{1}\right), o_{2}$ the centre of $C\left(b c d_{2}\right)$. See Figure 5. Then o is symmetric with o_{1} about $\overline{a b}, o$ is symmetric with o_{2} about $\overline{b c}$; take $\angle b a o=\angle a b o=\angle b a o_{1}=\angle a b o_{1}=\pi / 60$, $\angle o_{1} a d_{1}=\angle o_{1} d_{1} a=13 \pi / 36$, whence $\angle o_{1} b d_{1}=\angle o_{1} d_{1} b=\angle o_{2} b d_{2}=\angle o_{2} d_{2} b=11 \pi / 90$. Also, take $\angle o a c=$ $\angle o c a=\pi / 6$. It follows that $\angle o b c=\angle o c b=\angle o_{2} b c=\angle o_{2} c b=19 \pi / 60$ and $\angle o_{2} c d_{2}=\angle o_{2} d_{2} c=11 \pi / 180$.

Figure 5: $n=12$.

Then $\|a-d\|=\left\|a-d_{1}\right\|=2 \cos \frac{13 \pi}{36},\|c-d\|=\left\|c-d_{2}\right\|=2 \cos \frac{11 \pi}{180}$ and $\|a-c\|=2 \cos \frac{\pi}{6}$. We obtain

$$
\cos \angle d a c=\frac{\|a-d\|^{2}+\|a-c\|^{2}-\|c-d\|^{2}}{2\|a-d\|\|a-c\|}<0,
$$

which implies that $d a c$ is an obtuse triangle. This cage holds 12 unit discs.
Case $n=16$. This is clear.
One can wish to have a characterization of all tetrahedral cages holding n unit discs, and this for every n for which they exist. While this is easy to accomplish for very small n or $n=16$, in other cases it seems more complicated. We choose to leave this to the enthusiastic reader.

4 A pentahedral cage for unit discs

The smallest n for which there are no tetrahedral cages holding n discs is 7 , by Theorem 2.7 in [5]. This prompted the authors of [5] to look for a pentahedral cage holding 7 discs. Theorem 3.5 in [5] presents such a cage. But, based on that example, we cannot find a cage holding 7 unit discs. So, the natural question arises whether a cage holding 7 unit discs does or does not exist.
Theorem 3. There exists a quadrilateral pyramid such that the associated cage holds 7 unit discs.
Proof. We consider the unit circle $\mathbb{S}_{1} \subset \mathbb{R}^{2}=P$ and take on it the points a, b, c, d such that $\lambda(\overline{a b})=(\pi / 2)+3 \varepsilon$, $\lambda(\overrightarrow{b c})=(\pi / 2)-\varepsilon, \lambda(\overrightarrow{c d})=(\pi / 2)-\varepsilon, \lambda(\widehat{d a})=(\pi / 2)-\varepsilon$, where λ denotes length and ε is small.

Take $e^{\prime} \in a c$, at distance ε from c. The triangles $e^{\prime} a b, e^{\prime} b c, e^{\prime} c d, e^{\prime} d a$ are obtuse. By choosing $e \in \mathbb{R}^{3} \backslash P$ above P and close enough to e^{\prime}, the triangles eab, ebc, ecd, eda will be obtuse, too. Hence, cage(abcde) holds no disc at any triangular face. How many discs are held at abcd?

First note that $\angle e a \mathbf{0}<\pi / 2, \angle e b \mathbf{0}<\pi / 2, \angle e c \mathbf{0}<\pi / 2, \angle e d \mathbf{0}<\pi / 2$, where $\mathbf{0}$ is the origin of \mathbb{R}^{3}. Consequently, the discs held are: one above the whole $a b c d$, one below $a b$ and above $b c, c d$, and $d a$, one below $b c$ and above the other three, one below $c d$ and above the other three, one below $d a$ and above the other three, one below $b c$ and $c d$ and above the other two, and one below $c d$ and $d a$ and above the other two. These are the 7 unit discs held by cage($a b c d e$).

Funding: The authors gratefully acknowledge financial support by NSF of China $(11871192,11471095)$ and the Program for Foreign experts of Hebei Province (No. 2019YX002A). The research of the second author was also partly supported by the GDRI ECO-Math.

References

[1] O. Aberth, An isoperimetric inequality for polyhedra and its application to an extremal problem. Proc. London Math. Soc. (3) 13 (1963), 322-336. MR149371 Zbl 0113.16204
[2] A. S. Besicovitch, A cage to hold a unit-sphere. In: Proc. Sympos. Pure Math., Vol. VII, 19-20, Amer. Math. Soc. 1963. MR0155236 Zbl 0141.19903
[3] H. Coxeter, Review 1950. Math. Reviews 20 (1959), 322. MR0095448
[4] G. Valette, À propos des cages circonscrites à une sphère. Bull. Soc. Math. Belg. 21 (1969), 124-125. MR262927 Zbl 0189.52803
[5] L. Yuan, T. Zamfirescu, Tetrahedral and pentahedral cages for discs. Ars Math. Contemp. 17 (2019), 255-270. MR4031523 Zbl 07172042

[^0]: *Corresponding author: Liping Yuan, School of Mathematical Sciences, Hebei Normal University, 050024 Shijiazhuang, P.R. China, Hebei Key Laboratory of Computational Mathematics and Applications, 050024 Shijiazhuang, P.R. China, email: Ipyuan@hebtu.edu.cn
 Tudor Zamfirescu, Fachbereich Mathematik, Technische Universität Dortmund, 44221 Dortmund, Germany, Roumanian Academy, Bucharest, Roumania, College of Mathematics and Information Science, Hebei Normal University, 050024 Shijiazhuang, P.R. China, email: tuzamfirescu@gmail.com
 Yanxue Zhang, School of Mathematical Sciences, Hebei Normal University, 050024 Shijiazhuang, P.R. China, Hebei Key Laboratory of Computational Mathematics and Applications, 050024 Shijiazhuang, P.R. China, email: ??

