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Abstract

This paper mainly discusses the zero forcing density of infinite graphs. When G
is an infinite graph, arrange all distinct finite subgraphs of G in a sequence {Gn}.
The zero forcing density of G is defined by ρG = lim inf

n→∞
Z(Gn)
|VGn | , where Z(Gn) is the

zero forcing number of Gn. When ρG = lim inf
n→∞

Z(Gn)
|VGn | = 0, then we define the second

density as ρ′G = lim inf
n→∞

Z(Gn)√
|VGn |

. Considering the eleven Archimedean tiling graphs,

we get upper bounds of zero forcing density of the tilings (34, 6) , (32, 4, 3, 4), (4, 82),
(3, 6, 3, 6), (3, 122). The zero forcing density of the other six graphs is 0. Then we
obtain upper bounds of the second density of these six Archimedean tiling graphs.
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1 Introduction

The concepts of zero forcing set and number were first introduced in [1]. One of the
primary aims of these concepts is to study the minimum rank of a graph.

Let G be a finite graph, the vertices of which are coloured black or white.

Definition 1. Colour-change rule: If x is a black vertex and exactly one neighbour y of x
is white, then change the colour of y into black.

Definition 2. Given an initial colouring of G, if after repeatedly applying the colour-change
rule all vertices become black, we say that the set of initial black vertices is a zero forcing
set of G.

Definition 3. If U is a zero forcing set of G with the minimum number of elements, then
|U | is the zero forcing number Z(G) of G.

Consider, for example, a path P of length 4, see Figure 1. Initially, let a be a black
vertex and the other vertices white. After repeatedly applying the colour-change rule, all
vertices become black. So {a} is a zero forcing set of the path P, as shown in Figure 1 (a).
If, initially, b and c are black vertices, and the other vertices are white, after the repeated
application of the colour-change rule, again all vertices become black. So, the set of vertices
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Figure 1: The colour-change of a path.

{b, c} is also a zero forcing set of P, see Figure 1 (b). Zero forcing sets of the same graph
are not unique, and the zero forcing number of P is 1.

Let B be a symmetric matrix in Rn×n. The graph of B, denoted by G(B), is the graph
with vertex set {1, 2..., n} and edge set {ij : bij 6= 0 for 1 ≤ i < j ≤ n}. Let

S(G) =
{
B ∈ Rn×n : G(B) = G

}
.

The minimum rank and the maximum nullity of a graph G with order n are defined,
respectively, as:

mr(G) = min{rank(B) : B ∈ S(G)} and M(G) = max{nul(B) : B ∈ S(G)},

where nul(B) is the dimension of the null space of the matrix B. Clearly, mr(G)+M(G) =
n. For a graph G, it is shown in [1] that M(G) ≤ Z(G).

For any graph G, VG denotes its set of vertices and EG its set of edges. δ := min{d(v) :
v ∈ VG} is the minimum degree of G, and ∆ := max{d(v) : v ∈ VG} is its maximum degree.
The girth g of a graph G is the minimum of the length of the cycles in G. A vertex of
degree 1 is a pendant vertex, whereas a vertex of degree at least 3 is a major vertex. Let
p(G) denote the number of pendant vertices in G. Given a graph G, a pendant vertex u is
said to be a terminal vertex of a major vertex x of G if d(u, x) < d(u, y) for all other major
vertices y of G. The terminal degree ter(x) of a major vertex x is the number of terminal
vertices of x.

Davila and Kenter [4] conjectured that Z(G) ≥ (g− 3)(δ− 2) + δ for a graph with girth
g ≥ 3 and minimum degree δ ≥ 2. Gentner et al. [7] showed that Z(G) ≥ 2δ − 2 for every
triangle-free graph with minimum degree δ ≥ 2. Later, Davila and Kenter’s conjecture was
proved to be true for all graphs with girth g ∈ {5, 6, 7, 8, 9, 10} and minimum degree
δ ≥ 2 (see Davila and Henning [5], Gentner and Rautenbach [8]). Using techniques in [5],
in 2018 Davila et al. [6] provided a proof for all graphs with g ≥ 5, δ ≥ 2.
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Amos et al. [2] showed that

Z(G) ≤ ∆n

∆ + 1

if G is a graph with δ ≥ 1; if G is a connected graph with more than two vertices, then

Z(G) ≤ (∆− 2)n

∆− 1
.

The case of equality was characterized, independently, by Gentner et al. [7] and Lu et al.
[11]. Caro and Pepper [3] obtained

Z(G) ≤ (∆− 2)n− (∆− δ) + 2

∆− 1
,

where G is a connected non-regular graph with ∆ ≥ 2. This gives a better bound for graphs
with ∆− δ ≥ 3.

A major vertex x is an exterior major vertex if ter(x) > 0. The number of exterior
major vertices of G is denoted by ex(G). For a graph G, let Φ(G) = |EG| − |VG|+ c(G) be
the cyclomatic number of G, where c(G) is the number of connected components of G.

Wang et al. [12] showed Z(G) ∈ [ p(G)− ex(G)− 1, p(G) + 2Φ(G)], and characterized
graphs satisfying Z(G) = p(G)− ex(G) and Z(G) = p(G) + 2Φ(G)− 1 respectively. Later,
Li et al. [10] characterized graphs satisfying Z(G) = p(G)− ex(G) + 1 and Z(G) = p(G) +
2Φ(G)− 2 respectively.

Definition 4. If G is a finite graph, then the zero forcing density of G is defined as

ρG =
Z(G)

|VG|
.

If G is an infinite graph, arrange all distinct finite subgraphs of G in a sequence {Gn}.
Then, the zero forcing density of G is defined as

ρG = lim inf
n→∞

Z(Gn)

|VGn |
.

When ρG = lim inf
n→∞

Z(Gn)
|VGn |

= 0, then the second density is defined as

ρ′G = lim inf
n→∞

Z(Gn)√
|VGn

|
.

To explore the zero forcing density of infinite graphs, we start with Archimedean tiling
graphs. They are divided into monohedral tilings, dihedral tilings and trihedral tilings ac-
cording to the number of non-congruent tiles [9]. Considering finite subgraphs of a tiling
graph, we find for them zero forcing sets, and then we get the limit of the ratio between
the number of vertices in zero forcing sets and the total number of vertices. So we obtain
an upper bound of the zero forcing density of the tiling graph.
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2 Zero forcing density of monohedral tiling graphs

Theorem 1. The zero forcing density of the (44) tiling is 0. Its second density is bounded
above by 2

√
2.

Proof. The degree of each vertex in the (44) tiling is 4. First, pick a vertex u and make it
black. Then consider the four adjacent vertices of u, and make three of them black and the
remaining one white, as shown in Figure 2 (1). At this time, the set of black vertices is a
zero forcing set of the graph in Figure 2 (1). Consider the adjacent vertices of those vertices
on the black dotted line in Figure 2 (1), and the vertices on the black dotted line in Figure
2 (2) are obtained. The set of black and gray vertices forms a zero forcing set in Figure
2 (2), where the set of black vertices is the zero forcing set in Figure 2 (1), and the set of
gray vertices is added to it. By analogy, the vertices in Figure 2 (n) are obtained by adding
the adjacent vertices of the black dotted line in Figure 2 (n− 1). The additional vertices of
the zero forcing set of Figure 2 (n) are these gray vertices in Figure 2 (n).

Then we get a family of finite subgraphs. For any positive integer n, compare the Figure
2 (n) with the Figure 2 (n− 1). The additional vertices of the Figure 2 (n) are the vertices
on the black dotted line, hence, the total number of vertices increases by 4n. The number of
vertices of the zero forcing set, for any positive integer n, increases by 4. Therefore, we get
that the total number of vertices of Figure 2 (n) is 2n2 + 2n+ 1. The number of elements
in the zero forcing set in Figure 2 (n) is 4n. Thus, the zero forcing density of the (44) tiling
is 0. But we get

lim
n→∞

4n√
2n2 + 2n+ 1

= 2
√

2.

Therefore, its second density is bounded above by 2
√

2.

Figure 2: A family of finite subgraphs of the tiling (44).

Theorem 2. The zero forcing density of the (36) tiling is 0. Its second density is at most
2
√

3.
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Proof. Considering the tiling of ( 36), we also get a family of finite subgraphs, see Figure 3.
The gray shadow part of each graph is the previous graph; the set of black and gray vertices
is a zero forcing set, where the set of black vertices is the previous zero forcing set, and
the set of gray vertices is added to it. For any positive integer n, compare the Figure 3 (n)
with the Figure 3 (n− 1). The additional vertices are the vertices on the maximal regular
hexagon in Figure 3 (n). So, the total number of vertices increases by 6n; the number of
vertices of a zero forcing set increases by 6 in every Figure 3 (n). So the total number of
vertices of Figure 3 (n) is 3n2 + 3n + 1. The number of vertices in the zero forcing set of
Figure 3 (n) is 6n. Thus, ρ(36) = 0. But

ρ′(36) ≤ lim
n→∞

6n√
3n2 + 3n+ 1

= 2
√

3.

Figure 3: A family of finite subgraphs of the tiling (36).

The proofs of the next four theorems are similar. Observe the attached figures.

Theorem 3. For the (63) tiling, ρ(63) = 0 and ρ′(63) ≤
√

6.

Proof.

ρ′(63) ≤ lim
n→∞

6n− 9√
6n2 − 12n+ 4

=
√

6,

where n ≥ 3, see Figure 4.

3 Zero forcing density of dihedral tiling graphs

Theorem 4. For the (34, 6) tiling, ρ(34,6) ≤ 1
6 .
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Figure 4: A family of finite subgraphs of the tiling (63).

Proof.

ρ(34,6) ≤ lim
n→∞

3n2 − 7n+ 10

18n2 − 48n+ 28
=

1

6
,

where n ≥ 3, see Figure 5.

Figure 5: A family of finite subgraphs of the tiling (34, 6).

Theorem 5. An upper bound of the zero forcing density of the (32, 4, 3, 4) tiling is 1
4 .

Proof. Consider Figure 6 (n) for n ≥ 3. We have

ρ(32,4,3,4) ≤ lim
n→∞

2n2 − n+ 3

8n2 − 8n+ 1
=

1

4
.
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Figure 6: A family of finite subgraphs of the tiling (32, 4, 3, 4).

Theorem 6. The zero forcing density of the (4, 82) tiling is at most 1
4 .

Proof. Consider the subgraphs of the tiling (4, 82) in Figure 7 (n) for n ≥ 5. We have

ρ(4,82) ≤ lim
n→∞

4n2 − 24n+ 43

16n2 − 72n+ 80
=

1

4
.

Figure 7: A family of finite subgraphs of the tiling (4, 82).

Theorem 7. The zero forcing density of the (3, 6, 3, 6) tiling is at most 1
3 .

Proof. Considering the (3, 6, 3, 6) tiling, we obtain a family of finite subgraphs, as shown
in Figure 8. In each graph, the set of black and gray vertices is a zero forcing set. Now we
compute the number of vertices in Figure 8 (n). When n = 3m, the number of vertices of
the zero forcing set is 9m2 + 5m, and the total number of vertices is 27m2 + 3m− 1; when
n = 3m + 1, the number of vertices of the zero forcing set is 9m2 + 11m + 4, whereas the
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Figure 8: A family of finite subgraphs of the tiling (3, 6, 3, 6).
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total number of vertices is 27m2 + 21m + 5; when n = 3m + 2, the number of vertices of
the zero forcing set is 9m2 + 17m+ 8, and the total number of vertices 27m2 + 39m+ 13.
We have

ρ(3,6,3,6) ≤



lim
m→∞

9m2 + 5m

27m2 + 3m− 1
=

1

3
;

lim
m→∞

9m2 + 11m+ 4

27m2 + 21m+ 5
=

1

3
;

lim
m→∞

9m2 + 17m+ 8

27m2 + 39m+ 13
=

1

3
.

The next two proofs are similar to that of Theorem 7. We observe the attached figures.

Theorem 8. The zero forcing density of the (3, 122) tiling is bounded above by 1
6 .

Proof. See Figure 9. In Figure 9 (n), we have

ρ(3,122) ≤



lim
m→∞

9m2 + 3m

54m2 − 6m
=

1

6
, for n = 3m;

lim
m→∞

9m2 + 9m+ 3

54m2 + 30m+ 6
=

1

6
, for n = 3m+ 1;

lim
m→∞

9m2 + 15m+ 6

54m2 + 66m+ 18
=

1

6
, for n = 3m+ 2.

Theorem 9. The zero forcing density of the (33, 42) tiling is 0. An upper bound of its

second density is 4
√
6

3 .

Proof. Considering Figure 10 (n), we have

ρ′(33,42) ≤



lim
m→∞

16m− 1√
24m2 + 8m

=
4
√

6

3
, if n = 3m;

lim
m→∞

16m+ 5√
24m2 + 24m+ 6

=
4
√

6

3
, if n = 3m+ 1;

lim
m→∞

16m+ 10√
24m2 + 40m+ 16

=
4
√

6

3
, if n = 3m+ 2.
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Figure 9: A family of finite subgraphs of the tiling (3, 122).
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Figure 10: A family of finite subgraphs of the tiling (33, 42).



460 Zero forcing density of Archimedean tiling graphs

4 Zero forcing density of trihedral tiling graphs

Theorem 10. The zero forcing density of the (3, 4, 6, 4) tiling is 0. Its second density is
bounded above by 2

√
2.

Proof. Observe the family of finite subgraphs of the (3, 4, 6, 4) tiling, as shown in Figure 11.
Clearly, the number of vertices of the zero forcing set of Figure 11 (2) is 8. For any positive
integer n ≥ 3, the number of vertices of the zero forcing set of Figure 11 (n) is 6n−4. When
n is odd, the total number of vertices of the Figure 11 (n) is 9

2n
2 − 2n− 3

2 ; when n is even,
that number is 9

2n
2 − n− 1. Then, the zero forcing density of the (3, 4, 6, 4) tiling is 0. But

we have

ρ′(3,4,6,4) ≤ lim
n→∞

6n− 4√
9
2n

2 − 2n− 3
2

= lim
n→∞

6n− 4√
9
2n

2 − n− 1
= 2
√

2.

Figure 11: A family of finite subgraphs of the tiling (3, 4, 6, 4).

Theorem 11. The zero forcing density of the (4, 6, 12) tiling is 0, whereas its second density

is at most 2
√
30
5 .
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Proof. By a method similar to that used in the proof of Theorem 1, we have

ρ′(4,6,12) ≤ lim
n→∞

12n− 32√
30n2 − 118n+ 84

=
2
√

30

5
,

where n ≥ 4, see Figure 12.

Figure 12: A family of finite subgraphs of the tiling (4, 6, 12).
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