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Abstract: Let F be a family of sets in Rd (always d ≥ 2). A set M ⊂ Rd is called F -convex, if for
any pair of distinct points x, y ∈ M, there is a set F ∈ F , such that x, y ∈ F and F ⊂ M. A thin right
triangle is the boundary of a non-degenerate right triangle in R2. The aim of this paper is to introduce
and begin investigating the thin right triangle convexity for short trt-convexity, which is obtained
when F is the family of all thin right triangles. We investigate the trt-convexity of unbounded sets,
convex surfaces and planar geometric graphs.
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1. Introduction

Let F be a family of sets in a space Rd (d ≥ 2). A set M ⊂ Rd is called F -convex if for
any pair of distinct points x, y ∈ M, there is a set F ∈ F such that x, y ∈ F and F ⊂ M.

The investigation of this very general kind of convexity was proposed in 1974 at a
meeting on convexity in Oberwolfach by the third author.

Usual convexity, affine linearity, arc-wise connectedness and polygonal connectedness
are examples of F -convexity (for suitably chosen families F ).

Blind, Valette and the third author [1], and Böröczky Jr. [2] investigated the rectangular
convexity, the case when F contains all non-degenerate rectangles. The last two authors [5]
presented a discretization of rectangular convexity, the right quadruple convexity (for short,
rq-convexity), where F is the family of all rectangular quadruples, which are vertex sets of
rectangles. They are also currently studying another generalization, the thin rectangular
convexity, by taking all thin rectangles (boundaries of rectangles) as F .

It became clear that these generalizations revealed many interesting families of sets,
leading far beyond the horizon of convexity.

In [6], the third author studied right convexity, the case when F consists of all right
triangles, and the last two authors [4] investigated the right triple convexity for short
rt-convexity, where F contains all triples {x, y, z} ⊂ Rd with ∠xyz = π/2.

Wang and the last two authors [3], generalizing in another way, investigated the
poidge-convexity (the case with F consisting of all unions {x} ∪ σ, called poidges, where x
is a point, σ a line segment, and conv({x} ∪ σ) a right triangle).

A thin right triangle is the boundary of a non-degenerate right triangle in R2. The aim
of this paper is to introduce and begin investigating the thin right triangle convexity for
short trt-convexity, which is obtained when F is the family of all thin right triangles.

Two points in M are said to enjoy the trt-property in M, if they belong to some thin right
triangle included in M. Thus, M is trt-convex if any pair of its points enjoy the trt-property.
Obviously, trt-convexity implies rt-convexity.
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For convex sets, right convexity, rt-convexity, poidge-convexity and trt-convexity are
equivalent. Not every poidge-convex set is trt-convex, not even rt-convex, but every rightly
convex set is rt-convexity, poidge-convex and trt-convexity.

In order to obtain results describing trt-convex sets different from those provided by
the initial study of right convexity, we must focus on sets which are essentially non-convex.

2. Definitions and Notation

For M ⊂ Rd, we denote by {M its complement, by M = affM its affine hull and by
convM its convex hull; further, intM, clM and bdM denote its topological interior, closure
and boundary, respectively, considered in affM.

For distinct x, y ∈ Rd, let xy be the line through x, y, xy the line segment from x to
y, and Hxy the hyperplane through x orthogonal to xy. If L, L

′
are affine subspaces of Rd,

L ‖ L
′

means that they are parallel and L⊥L
′

that they are orthogonal. In addition, πL(x)
denotes the orthogonal projection of x onto L.

For any compact set C ⊂ Rd, let SC be the smallest hypersphere containing C in its
convex hull.

Let M be a closed convex set in Rd (d ≥ 2). A point x in M is called an extreme point of
M if there exists no non-degenerate line segment in M that contains x in its relative interior.
The set of extreme points of M is denoted by extM.

A convex body is a compact convex set in Rd with a non-empty interior. The intersection
of a convex body with a supporting hyperplane is called a face. A facet is a face of dimension
d− 1.

Let h denote the Pompeiu–Hausdorff distance (also called Hausdorff distance) between
compact sets.

For a1, · · · , an ∈ Rd, put a1 · · · an = conv{a1, · · · , an}.

3. Unbounded trt-Convex Sets

We now investigate the trt-convexity of unbounded sets in Rd.

Theorem 1. The complement of a connected bounded set M ⊂ R2 which equals intclM is trt-
convex if and only if clM is a right or an acute triangle.

Proof. The “if” part is obvious.
Suppose {M is trt-convex. Let Q = conv clM.
First, we show that bdQ ⊂ bdM. If the inclusion is not true, we choose x ∈ (bdQ) \

bdM. There are y, z ∈ bdM such that x lies in the line segment yz, and yz is a supporting
line of Q. The line Hxy is orthogonal to yz and cuts bdM in at least two points. Let uv be
the longest line segment with u, v ∈ Hxy ∩ bdM. Then any thin right triangle containing
u, v meets M, contradiction.

Now we prove that M is convex. Indeed, otherwise we choose x ∈ (intQ) \M, y ∈ M.
The line xy cuts bdQ in two points, u, v. Assume that the order on xy is u, x, y, v. Then, x, v
do not enjoy the trt-property in {M.

We claim that bdM does not contain parallel non-degenerate line segments.
Indeed, if bdM contains such line segments, then there is no thin right triangle in {M

containing their midpoints.
Let L1, L2, L3, L4, L5 be supporting lines of clM, parallel to the sides of a regular

pentagon. Choose ai ∈ Li ∩ clM (i = 1, · · · , 5). Let A1 be the arc in bdM from a1 to a2 not
containing a3. If A1 6= a1a2, for any b ∈ A1 distinct from a1, a2, ∠a1ba2 ≥ 3π/5. Let ci ∈ A1
lie between ai and b (i = 1, 2), such that a supporting line at ci be parallel to aib. Obviously,
c1, c2 do not enjoy the trt-property in {M. Hence, clM = a1a2a3a4a5, where some of the ai’s
may not be distinct.

Assume that an angle of the polygon clM is obtuse. Then, the midpoints of its sides do
not enjoy the trt-property in {M. Hence, clM has no obtuse angle and must consequently
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be a rectangle or a non-obtuse triangle. As bdM contains no parallel line segments, the
proof is finished.

Theorem 2. The complement of a connected bounded open set M in Rd, where d ≥ 3, is trt-convex,
if for every x, y ∈ bdM, there exist two non-parallel hyperplanes Hx, Hy disjoint from M, with
x ∈ Hx, y ∈ Hy.

Proof. We claim that M is convex.
Indeed, otherwise there exist two points u, v ∈ M such that uv ∩ bdM 6= ∅. Choose

w ∈ uv ∩ bdM. Since u 6∈ Hw, Hw separates u from v. So Hw ∩M 6= ∅, a contradiction.
Now, we choose x, y ∈ {M.
If x, y ∈ bdM, consider the two non-parallel hyperplanes Hx, Hy at x and y, respec-

tively. Take a line L ⊂ Hx ∩ Hy. Choose z ∈ L, such that ∠xzy < π/2. There exist x′ ∈ zx,
y′ ∈ zy far away, yielding a right triangle zx′y′ with x ∈ zx′, y ∈ zy′ and x′y′ ∩M = ∅.
Then, x′y′, x′z, y′z form a thin right triangle containing x, y.

If x ∈ bdM, y 6∈ bdM, consider the point z ∈ clM closest from y. Let Hx 3 x and
Hz 3 z be the hyperplanes given by the statement. Let H 3 y be parallel to Hz. It follows
that Hx and H are not parallel. The proof continues as before. We proceed similarly if
x, y 6∈ bdM.

The connectedness condition in Theorem 2 is in fact not necessary. We prove the
following strengthening.

Theorem 3. The complement of a bounded open set M in Rd, with at most two components and
d ≥ 3, is trt-convex, if for every x, y ∈ bdM, there exist two non-parallel hyperplanes Hx, Hy
disjoint from M, with x ∈ Hx, y ∈ Hy.

Proof. For M connected, we apply Theorem 2.
Suppose now that M has the components M1, M2. Like in the proof of Theorem 2, it

can be shown that both M1, M2 are convex.
Consider x, y ∈ {M. If x, y ∈ bdM, we proceed like in the preceding proof.
Assume now x 6∈ bdM.
Case 1. xy ∩M = ∅.
Then, close to x a point z can be found such that ∠xzy = π/2 and xyz ∩M = ∅.
Case 2. xy ∩M1 6= ∅.
Let {u, v} = xy ∩ bdM1. (It is easily seen that this intersection has two points.) By

hypothesis, there exist non-parallel hyperplanes Hu 3 u, Hv 3 v disjoint from M. Put
H = Hu ∩ Hv.

M2 can lie in only one of the four half spaces determined by Hu ∪ Hv in Rd. This
implies that at most one of the sets conv({x} ∪ H), conv({y} ∪ H) meets M2, say the latter.

Consider an arbitrary line L ⊂ H and the plane P = aff({y} ∪ L). Clearly, y 6∈ Y,
where

Y = M2 ∩ conv({y} ∪ H).

There exists a half-line L
′ ⊂ L such that, for each z ∈ L

′
, yz ∩M2 = ∅. Now, choose

z
′ ∈ L

′
far away, so that ∠xz

′
y < π/2. Another pair of points x

′
, y
′
can be chosen on xz′ , yz′ ,

respectively, such that x ∈ x
′
z
′
, y ∈ y

′
z
′
, ∠x

′
y
′
z
′
= π/2, and bd(x

′
y
′
z
′
) ∩M = ∅.

Remark 1. The d ≥ 3 in Theorem 3 is the best possible. When d = 2, we may consider M =
M1 ∪M2, where both clM1 and clM2 are right triangles. However, x ∈ bdM1 and y ∈ bdM2 do
not enjoy the trt-property in {M. See Figure 1.
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Figure 1. Illustration of Remark 1.

A planar convex set having the union of two half-lines with a common end point as
boundary is called a digon.

Theorem 4. The complement of a bounded open set M in Rd, with at most three components and
d ≥ 4, is trt-convex, if for every x, y ∈ bdM, there exist two non-parallel hyperplanes Hx, Hy
disjoint from M, with x ∈ Hx, y ∈ Hy.

Proof. We proceed like in the preceding proof until Case 1, including it.
Case 2. We again take u, v, Hu and Hv as before. The affine subspace H = Hu ∩ Hv

has dimension d− 2 ≥ 2. Consider an arbitrary plane P ⊂ H and the 3-dimensional affine
subspaces Ex = aff({x} ∪ P), Ey = aff({y} ∪ P).

It is again true that at most one of conv({x} ∪ H), conv({y} ∪ H) meets M2, say
the first.

If Ex ∩M2 6= ∅ (notice that this may not be the case), consider Kx = cl(Ex ∩M2). Let
Π be the plane through x parallel to P. If Π∩Kx 6= ∅ (again, this may not happen), take the
two supporting lines L1, L2 of Π ∩ Kx passing through x. Take x1 ∈ L1 ∩ Kx, x2 ∈ L2 ∩ Kx.
Let Pxi be the supporting plane of Kx at xi (i = 1, 2).

The set (Px1 ∩ P) ∪ (Px2 ∩ P) includes two half-lines determining a digon ∆x with the
following property. Every half-line starting at x and containing a point of Kx either misses
P or meets P inside ∆x.

We proceed in the same way with M3. It meets conv({x} ∪ H) or conv({y} ∪ H) or
none of them. In the first case, we consider Ex, in the second Ey. Going analogously ahead,
we find a digon ∆y ⊂ P, such that every half-line from y through a point of Ky either misses
P or meets P inside ∆y.

Now, choose a half-line L
′ ⊂ P \ (∆x ∪∆y), and continue as in the preceding proof.

Question 1. Is Theorem 2 valid without any condition regarding connectedness?

4. trt-Convexity of Convex Surfaces

Can convex surfaces be trt-convex?
A tetrahedron in R3 having a vertex, at which the angles of all three facets are right,

will be called right.

Theorem 5. For a convex body P ⊂ R3, bdP is trt-convex if and only if P is a right tetrahedron.

Proof. For the “if” implication, let 0abc be a tetrahedron with all three angles at 0 right. We
show that bd(0abc) is trt-convex.

Let x, y ∈ bd(0abc). We have four essentially different situations.
Case 1. x, y ∈ 0ab.
This case follows from the right convexity of any right triangle.
Case 2. x, y ∈ abc.
Similarly, abc being an acute triangle, it must be rightly convex.
Case 3. x ∈ 0ab, y ∈ 0bc.
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Assume without loss of generality that y is not closer than x from 0ac. Then,

π0b(x) y ∩ bd(0bc) ⊂ bc.

Denote by z this intersection. Put {u} = xπ0b(x) ∩ ab. The points u, π0b(x) and z are
the vertices of a thin right triangle included in bd(0abc).

Case 4. x ∈ 0ab, y ∈ abc.
Consider the point u from Case 3 and {v} = xπ0a(x) ∩ ab. Clearly,

abc = acv ∪ bcu.

If y ∈ acv, then vy ∩ ac 6= ∅. If y ∈ bcu, then uy ∩ bc 6= ∅.
So, if y ∈ acv, then x, y lie in a thin right triangle with vertices v, π0a(x), vy ∩ ac,

included in bd(0abc). Analogously, for y ∈ bcu.
Now, let us prove the “only if” implication.
Let Q = extP.
Claim 1. If two crossing line segments belong to bdP, then they lie in a facet of P.
Indeed, let uv, xy be the two line segments, and {z} = uv ∩ xy. Being a convex body,

P is not included in the plane xuz, supposed horizontal. Let s ∈ P \ xuz, below xuz, say.
Take t ∈ int(xuz) and assume that t ∈ int(ss′) for some s′ ∈ P. Then, z ∈ int(ss′vy), which
contradicts z ∈ bdP. Hence, there exist no such points s′, and consequently xuz ⊂ bdP.

Analogously, uzy ⊂ bdP, yzv ⊂ bdP, vzx ⊂ bdP and uxvy is a facet of P. Claim 1
is proven.

For any u, v ∈ Q, we have uv ⊂ bdP. Indeed, otherwise there is no thin right triangle
in bdP containing u, v.

We now prove that P has a facet. Assume that P has no facet.
Consider three extreme points u1, u2, u3 ∈ Q. We have u1u2 ∪ u2u3 ∪ u3u1 ⊂ bdP. Put

u1u2u3 = Π. Then, u1u2u3 ⊂ Π ∩ P.
Since P contains no facet, Π is not a supporting plane of P. Hence, Π divides P into

two parts P1, P2.
Choose v1 ∈ Q ∩ P1 \Π, v2 ∈ Q ∩ P2 \Π. We have v1v2 ⊂ bdP.
Consider the non-degenerate polytope u1u2u3v1v2. By Radon’s theorem, either one

vertex is in the tetrahedron determined by the other four, or one line segment Σ joining two
vertices meets the triangle ∆ formed by the other three. The first possibility is excluded, the
vertices being in Q. Since Σ ⊂ bdP, Σ ∩ ∆ avoids intP, whence Σ meets bd∆, and Claim 1
provides a facet of P, which contradicts our assumption.

Let E be a facet of P.
Claim 2. Q ∩ bdE is nowhere dense in bdE.
Suppose, in contrast, there exists a non-degenerate arc A ⊂ Q ∩ bdE. Choose w ∈

Q \ E and put {x} = πE(w). For y, z ∈ A close to each other, but different from x, ∠ywz
is small. If ∠wyz = π/2, then ∠xyz = π/2 and ∠wzy < π/2. Then, choose z′ ∈ A close
to z, such that still ∠wz′y < π/2. Since y, z, z′ are not collinear, being in Q, ∠xyz′ 6= π/2,
whence ∠wyz′ 6= π/2.

Hence, either the triangle wyz is not right, or we find the triangle wyz′ which is not
right. Obviously, the midpoints of the two long sides do not have the trt-property.

Claim 3. There are no disjoint line segments in bdE.
Suppose, on the contrary, S, T are such line segments, assumed maximal (with respect

to inclusion). Let S∗ be the component of (bdP) \ bd conv({w} ∪ S) not containing T, and
T∗ the component of (bdP) \ bd conv({w} ∪ T) not containing S. Since points in S∗ and
T∗ have the trt-property, we must have clS∗ = conv({w} ∪ S) and clT∗ = conv({w} ∪ T).

Thus, the triangles wab = clS∗ and wcd = clT∗ are facets of P.
Now, we easily find p ∈ int(wab), q ∈ int(wcd), such that ∠pwq 6= π/2. Put

{p′} = wp ∩ ab and {q′} = wq ∩ cd. We can arrange the triangle wp′q′ not to be right.
Indeed, if, for example ∠wp′q′ = π/2, wp′ ⊥ E or not. In the first case, for any choice of a
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point p′′ 6= πab(q
′) very close to p′ on ab, the triangle wp′′q′ is not right. In the second case,

for any choice of a point q′′ very close to q on cd, the triangle wp′q′′ is not right.
Hence, we may suppose the triangle wp′q′ not to be right. However, then p and q do

not enjoy the trt-property. Claim 3 is verified.
From Claims 2 and 3, it follows that E is a triangle ijk. In fact, every facet of P is a

triangle. Moreover, wi, wj, wk are edges of P. Suppose wij is not a facet of P. Then, some
point m ∈ Q is separated from k by wij. However, then mk meets wij, which means that
mk ∩ bd(wij) 6= ∅, as all four points belong to Q and mk ⊂ bdP. By Claim 1, P has a
quadrilateral facet, and a contradiction is found. Therefore, P = wijk.

It remains to prove that the tetrahedron P is right.
We call a tetrahedron abcd quasiright, if for any pair of opposite edges, such as ab, cd,

we have ab ⊥ acd or ab ⊥ bcd or cd ⊥ abc or cd ⊥ abd. Notice that a right tetrahedron is
quasiright. We first show that P is quasiright.

Choose arbitrarily the pair of opposite edges ij and kw of P. Choose x ∈ int(ij) and
y ∈ int(wk). Then, the only triangle boundaries in bdP containing x, y are bd(wxk) and
bd(ijy).

If ij ⊥ iwk or ij ⊥ jwk, then the condition for P to be quasiright is fulfilled at ij,
kw. Otherwise, card(Hij ∩ wk) ≤ 1, card(Hji ∩ wk) ≤ 1 and card(Sij ∩ wk) ≤ 2, so ijy is
not right for any y ∈ int(wk) \ (Hij ∪ Hji ∪ Sij). Fix such a point y. Since x, y have the
trt-property in bdP, wxk is right for any x ∈ int(ij). So ∠kwx = π/2 or ∠wkx = π/2 for
all x ∈ int(ij) \ Swk. Suppose without loss of generality ∠kwx = π/2 and ∠wkx < π/2.
Choose x′ ∈ int(ij) close to x such that ∠wkx′ < π/2. We also have ∠kwx′ = π/2. So
wk ⊥ ijw. Again, the condition for P to be quasiright is fulfilled at ij, kw.

Hence, P is quasiright. If it is not right, it must look like in Figure 2. However, then,
the midpoint of ij and a point close to w on wk do not enjoy the trt-property.

Figure 2. A tetrahedron wijk

5. trt-Convexity of Planar Geometric Graphs

A Jordan curve in Rd is the image of an injective continuous map of a circle into Rd.
A Jordan arc in Rd is the image of an injective continuous map of an interval [a, b]

into Rd.
A geometric graph D is a set containing finitely many points in Rd called vertices, which

form a set V(D), and including the union of finitely many Jordan arcs, each joining two
vertices, called edges.

A planar geometric graph is a geometric graph in R2, the edges of which have pairwise
no points in common, other than vertices of both.

Theorem 6. A planar geometric graph is trt-convex if and only if it is a thin right triangle or such
a triangle plus its height corresponding to the hypotenuse.

Proof. Let D ⊂ R2 be a planar geometric graph. The bounded components of R2 \ D will
be called regions.

The “if” part is obvious. Let us prove the other implication.
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Clearly, D is connected. Each region F of D has a closed Jordan curve as boundary,
consisting of two or more edges.

A broken line with at most three line segments and no obtuse angle will be called a
3-path.

Claim 1. Each edge is a 3-path .
Indeed, let E be an edge between the vertices v, w. Take v

′ ∈ E close to v and w
′ ∈ E

close to w. The trt-property of v
′
, w
′

yields the existence of a thin right triangle T ⊂ D, to
which v

′
, w
′

belong. Hence, the subarc E
′ ⊂ E from v

′
, w
′

is included in T. Therefore it is a
3-path . By letting v

′
, w
′

converge to v, w, respectively, we obtain the existence of a 3-path
from v to w in E, whence E is a 3-path .

Let F be a region of D and E ⊂ bdF an edge.
Claim 2. If the 3-path E has an angle (measured toward F) α 6= π at some point, then

α < π.
Indeed, suppose at some point y ∈ E, the angle is α > π. Take x ∈ (bdF) \ {y} such

that yx bisects that angle. The trt-property at x, y is clearly violated.
An important consequence of Claim 2 is that each edge lying between two regions is a

line segment.
Let a, b determine the diameter of D. The trt-property of a, b yields the existence of a

thin right triangle T ⊂ D with vertices a, b, c and the right angle at c.
For D = T, we have already the first case of the statement.
Another important consequence of Claim 2 is that each region is convex. Let Y be the

polygonal boundary of a region F or of the unbounded component D
′

of {D. Let v be a
vertex of Y, not necessarily in V(D), and β the angle at v toward F, respectively {D

′
.

Claim 3. β ≤ π/2.
Indeed, assume β > π/2. Take u, u

′
on the two sides of Y which meet at v, close to v.

Clearly, the trt-property is violated at u, u
′
.

From Claim 3 it follows that Y has at most four sides. Moreover, if Y has four sides,
then convY must be a rectangle. However, then, the trt-property is violated at midpoints of
opposite sides. Hence, Y is a triangle. So {D

′
= abc, and D is a triangulation.

Claim 4. If the edges J
′
, J
′′

of D have a common vertex v, then the angle at v equals π
or is not obtuse.

Indeed, if that angle is obtuse but not π, the trt-property at points on J
′
, J
′′
, close to v

is not enjoyed.
Remark 2. If D has a vertex v ∈ bd(abc) distinct from a, b, c, then, by Claim 4, v has

degree 3 and some edge vw of D is orthogonal to bd(abc) at v.
Remark 3. If D has a vertex v ∈ int(abc), then v has degree four and the four edges at

v are pairwise collinear or orthogonal. This also follows from Claim 4.
It is clear that a belongs to a triangle apq of the triangulation, with p ∈ ab.
By Remark 2, apq has its right angle at p, so either q ∈ int(abc) and Remark 3 is

contradicted, or q ∈ ac and Remark 2 is contradicted, except for the case when q = c, which
corresponds to the second case of the statement.

The proof is complete.
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