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Abstract: Let F be a family of sets in Rd (always d ≥ 2). A set M ⊂ Rd is called F -convex, if for
any pair of distinct points x, y ∈ M, there is a set F ∈ F , such that x, y ∈ F and F ⊂ M. A set of
four points {w, x, y, z} ⊂ Rd is called a rectangular quadruple, if conv{w, x, y, z} is a non-degenerate
rectangle. If F is the family of all rectangular quadruples, then we obtain the right quadruple convexity,
abbreviated as rq-convexity. In this paper we focus on the rq-convexity of complements, taken in most
cases in balls or parallelepipeds.
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1. Introduction

In 1974, the third author proposed at the meeting on Convexity in Oberwolfach the
investigation of the following general convexity concept. Let F be a family of sets in Rd

(always d ≥ 2). A set M ⊂ Rd is called F -convex, if for any pair of distinct points x, y ∈ M,
there is a set F ∈ F , such that x, y ∈ F and F ⊂ M [1].

Let M ⊂ Rd. If, for x, y ∈ M, there exists a set F ∈ F , such that x, y ∈ F and F ⊂ M,
then we say that x, y enjoy the F -property in M.

If, for any x, y ∈ M, there exists a non-degenerate rectangle F, such that x, y ∈ F and
F ⊂ M, then we call the set M rectangularly convex, or r-convex, for short.

In [1] a very simple characterization of planar convex bodies which are r-convex is
presented, but only as a conjecture. The characterization in the unbounded case is given
in [1], not only in the plane, but also in the much harder 3-dimensional case.

For the case of planar convex bodies, the characterization was proven only for some
particular families of sets, in [1] and by K. Böröczky in [2]. The general conjecture from
1980 is still open.

A set of four points {w, x, y, z} ⊂ Rd is called a rectangular quadruple, if conv{w, x, y, z}
is a non-degenerate rectangle. If F is the family of all rectangular quadruples, then we
obtain the right quadruple convexity, abbreviated as rq-convexity. This notion has been
introduced by Li, Yuan and Zamfirescu in [3], where the rq-convexity was also investigated
in several directions. The motivation for studying the rq-convexity mainly came from the
astonishing lack of knowledge about the rectangular convexity. More generalizations of
r-convexity can be seen in [4].

For distinct points x, y ∈ Rd, let xy denote the line-segment from x to y, xy the line
through x, y, Hxy the hyperplane through x orthogonal to xy, and Cxy the hypersphere
of diameter xy. For any compact set K ⊂ Rd, the circumsphere CK of K is the smallest
hypersphere containing K in its convex hull.
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For any two affine subspaces H1, H2 ⊂ Rd, H1 ‖ H2 means that H1 is parallel to H2,
and H1 ⊥ H2 means that they are orthogonal.

For a point x ∈ Rd and an affine subspace L ⊂ Rd, let ϕL(x) denote the orthogonal
projection of x on L.

For M ⊂ Rd, we denote by conv M its convex hull, by aff M its affine hull and by
int M, bd M, cl M its relative interior, boundary and closure, which means in the topology
of aff M. Put a1a2 . . . an = conv {a1, a2, . . . , an}, for a1, . . . , an ∈ Rd. Such a set is called a
polytope (polygon for d = 2). We call a polytope, which is congruent with the Cartesian
product of line-segments on the coordinate axes, a parallelepiped. Thus, all (planar) angles at
the vertices of a parallelepiped are right.

A convex body is a compact convex set in Rd with non-empty interior.
The space K of all convex bodies in Rd, equipped with the Pompeiu-Hausdorff metric,

is a Baire space. We say that most convex bodies have a property P, if those not enjoying P
form a set of first Baire category in K.

For a convex body M ⊂ Rd, let ext M denote the set of all its extreme points, i.e. points
not interior to any line-segment included in M.

For any real number r > 0 and point x ∈ Rd, let Br(x) be the ball (always considered
compact) of centre x and radius r.

In this short paper we focus on the rq-convexity of complements, taken in most cases
in balls or parallelepipeds.

2. rq-Convexity of Complements

Li, Yuan and Zamfirescu [3] proved that the complement of any bounded set in Rd is
rq-convex. Here, we obtain the same, for open convex sets instead of bounded sets.

Theorem 1. If Q ⊂ Rd is an open set and L ⊂ Q an open convex set different from Q, then Q\L
is rq-convex.

Proof. Let M = Q\L and a, b ∈ M. Suppose a, b ∈ bd L. At a and b, consider the
supporting hyperplanes Ha and Hb of cl L, respectively. For d ≥ 3, if Ha 6= Hab, then at least
one (closed) half-hyperplane Pa ⊂ Hab with bd Pa = Ha ∩Hab, does not meet L. If Ha = Hab,
then take Pa ⊂ Hab with a ∈ bd Pa, arbitrarily. Consider the analogous half-hyperplane
Pb. Its orthogonal projection P

′
b onto Hab meets Pa. Now, choose a′ ∈ Pa ∩ P

′
b\{a} and

b′ = b + a′ − a, both in M. Then {a, a′, b, b′} is a suitable rectangular quadruple.
For d = 2, if Ha 6= Hab and Hb 6= Hba, then perhaps Pa and Pb cannot be chosen

such that the intersection of Pa with P′b be more than {a}. In that case, Cab has two small
diametrically opposite arcs, one starting at a and the other at b, both in M. Thus, ab is the
diagonal of a rectangle with all its vertices in M.

If {a, b} 6⊂ bd L, the proof is easy.

Notice that Q and L may be unbounded; also, M may be simply connected.

Theorem 2. If K ⊂ Rd is a parallelepiped and L ⊂ int K a convex body, then K\int L is rq-convex.

Proof. Assume x, y ∈ (int K)\int L; by Theorem 1, x, y have the rq-property in M = K\int L.
Now, suppose that at least one of x, y, say x, belongs to the boundary of K. If x ∈ ext K,

then we are done for any y ∈ M, by using the orthogonal projections of y on an edge Ex
and a facet Fx of K meeting at x, with Ex ⊥ Fx.

Suppose x ∈ (bd K)\ext K. If x, y lie on parallel facets Fx, Fy of K respectively, then
there are another two points in Fx ∪ Fy forming with x, y a rectangular quadruple. If y lies
on a facet Fy orthogonal to Fx 3 x or in int M, then take two points z, w ∈ M, such that
z ∈ Hxy and w = y + z− x. Again, {x, y, z, w} is a rectangular quadruple.

Let now x ∈ (bd K)\ext K, y ∈ bd L. First, assume d = 2. Consider Ix = Hxy ∩M, Iy =
Hyx ∩M. If Hyx is a supporting line of L, we can choose z ∈ Ix distinct from x, such that
w = y + z− x ∈ Iy. If not, we choose a short line-segment yw ⊂ Iy disjoint from L\{y}.
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If Fx ⊂ Hxy, then take z = x + w− y. Suppose Fx ∩ Hxy = {x}. For Ix, yw in the same
half-plane of boundary xy, take z = x + w− y. For Ix, yw in different half-planes, there are
two antipodal points z′, w′ in Cxy ∩M close to x, y. In all cases, {x, y, z, w} (or {x, y, z′, w′}
in the latter case) is a suitable rectangular quadruple.

For d ≥ 3, consider a plane H 3 x, y parallel to an edge of a facet containing x. Now,
working in the rectangle K ∩ H, we are in the case d = 2, if L ∩ H is a planar convex body.
If not, the proof becomes trivial.

Theorem 3. Let B ⊂ Rd be a ball. If L ⊂ int B is a closed set, then B\L is rq-convex.

Proof. Let M = B\L and x, y ∈ M. If x, y ∈ int M or x, y ∈ bd B, then we can easily find
another two points in M forming with x, y a rectangular quadruple.

Suppose x ∈ bd B, y ∈ int M. Then Cxy has two small opposite arcs of a great circle
in M, starting at x, y. They provide rectangular quadruples.

Theorem 4. Suppose K ⊂ Rd is a parallelepiped. If L ⊂ int K is a closed set, then K\L is rq-convex.

Proof. Let M = K\L and x, y ∈ M.
Case 1. x ∈ ext K. We find x′, y′ ∈ bd K forming together with x, y a rectangular quadruple.
Case 2. x, y 6∈ ext K. We find a rectangle xyy′x′ (or xx′yy′) of small width, with all

vertices in M.

3. Complements of Polygons

Theorem 5. If D ⊂ R2 is a disc and P ⊂ int D a regular n-gon (n ≥ 3) concentric with D, then
D\int P is rq-convex.

Proof. Assume that the centre of D is 0 and its radius 1. For any x ∈ bd D, let Lx be
the supporting line of D at x. For any y ∈ (bd P)\ext P, denote by Iy the edge of bdP
containing y. Suppose xy orthogonal to both Lx and Iy, and 0 ∈ xy. Let the diameter
uv of Cxy be orthogonal to xy, and set L = uv ∩ P. If the side-length of P is 2a, we have
‖u− v‖ = 1 + a/ tan(π/n). Put p = (x + y)/2.

If n ≡ 0 (mod 4), then L ⊂ uv, because ‖p − u‖ = ‖p − v‖ = ‖p − y‖ > ‖y‖ =
‖s‖ = ‖q‖, where s, q are the midpoints of the edges of P met by uv, see Figure 1a. For
n ≡ 2 (mod 4), we consider a diameter wz of Cxy forming with uv the angle π/n, see
Figure 1b. Let mt = wz ∩ P, such that {m, z} and {t, w} are separated by p on wz. We have
‖p− z‖ = (1 + a/ tan(π/n))/2 and

‖p−m‖ =
1− a

tan π
n

2
sin

π

n
+

a
tan π

n
<

1− a
tan π

n

2
+

a
tan π

n
=

1 + a
tan π

n

2
.

Hence, z 6∈ P. A fortiori, w 6∈ P, as ‖p− t‖ < ‖p−m‖.
Suppose n is odd. If n = 3, then L ⊂ uv, see Figure 2a.
This is immediately seen. Thus, u, v 6∈ intP.
If n ≥ 5, then take a diameter jk of Cxy forming with xy the angle (2π/n)(bn/4c +

(1/2)), see Figure 2b. Let bc = jk ∩ P. The choice of jk guarantees the existence of g ∈ ext P
and q ∈ bd P, such that 0 ∈ gq and gq ‖ jk. Note that q is the midpoint of a side of P. Because

‖p− c‖ ≤ ‖q‖ = a
tan π

n
<

1 + a
tan π

n

2
= ‖p− k‖,

k 6∈ P. Let h = ϕgq(b).
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(a) (b)

Figure 1. n is even. (a) n ≡ 0 (mod 4); (b) n ≡ 2 (mod 4).

(a) (b)

Figure 2. n is odd. (a) n = 3; (b) n ≥ 5.

We have

‖b− c‖ = ‖h− q‖ = ‖g− q‖ − ‖g− h‖ = ‖g− q‖ − ‖b− h‖ tan
π

n
.

The inequality ∠0pϕgq(p) < π/n yields

‖b− h‖ = ‖p− ϕgq(p)‖ = ‖p‖ cos∠0pϕgq(p) > ‖p‖ cos
π

n
.

Because a ≤ sin(π/n),

‖b− c‖ ≤ a
sin π

n
+

a
tan π

n
−

1− a
tan π

n

2
sin

π

n
< 1 +

a
tan π

n
= ‖k− j‖,

which implies that j 6∈ P. For all cases, we find u, v (or w, z or j, k) in Cxy, forming together
with x, y a rectangular quadruple lying in D\int P.

Is the restriction to regular polygons in Theorem 5 essential? Take n = 3. Is a result
similar to Theorem 5 valid for arbitrary triangles? Our next theorem affirmatively answers
this question, but adds a condition on the size.

Theorem 6. Let D ⊂ R2 be a unit disc, T a triangle with its circumcircle CT concentric with D.
If the radius of CT is no more than

√
3/2, then D\int T is rq-convex.

Proof. Let T = abc, 0 be the centre of D and x ∈ bd D, y ∈ (bd T)\ext T. Consider xy
orthogonal to both Lx and Iy, defined as in the preceding proof.

Suppose T is a non-acute triangle; thus, 0 is the midpoint of ab. Assume that the radius
rCT of CT is

√
3/2. If x0 ⊥ ab and CT ∩ Cx0 = {e, f }, such that b and e are not separated

by x0, we find out that a, x/2, e are collinear. Only in case c = e, T ∩ Cx0 is a half-circle.
Then the four points ae ∩ Cx0, x and 0 lie in M = D\int T. In case T is obtuse, we have the
same rectangular quadruple in M. If rCT <

√
3/2, then the intersection of ac and Cx0 can
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not determine a diameter of Cx0. We can easily choose two antipodal points of Cxy in M
different from x, y.

If T is an acute triangle and y is the midpoint of ab, then Cxy is lager than Cx0. Assume
that T ∩ Cxy contains a half-circle of Cxy. Then ∠acb is at least π/2, contradicting the
assumption that T is an acute triangle. Hence, there are always two antipodal points of Cxy,
forming together with x, y a rectangular quadruple in M.

4. Generic Results

In this section, like in the previous one, we consider complements of interiors of
convex bodies in discs. We want now to see what happens with most of them.

Consider a convex body K ⊂ R2. Let ψK be the set of all points v ∈ bd K, such that the
vector v is external normal at v to K. In other words, 0v and some supporting line H at v
are orthogonal, and H does not separate 0 from int K.

For x ∈ bd K, $i(K, x) and $s(K, x) denote the lower and the upper curvature radius
of bd K at x (see H. Busemann [2], p. 14). If $i(K, x) = $s(K, x), the common value is the
curvature radius and its inverse is the curvature of K at x.

Theorem 7. Let D ⊂ R2 be a disc of centre 0. For most convex bodies K ⊂ D, at each point
x ∈ ψK, the upper curvature of bd K is at least 1/‖x‖.

Proof. We may consider only convex bodies K with 0 6∈ bd K and K ⊂ int D, as those K
not satisfying these conditions form a nowhere dense set.

For n ∈ N, let Kn be the set of all K ⊂ int D, such that, for some x ∈ ψK, Bn−1(x) ∩
Dn(x) ⊂ K, where Dn(x) is the disc of centre o, such that 0 ∈ ox, ‖o‖ = 1/n and x ∈
bd Dn(x). Clearly, at such a point x, the lower radius of curvature of bd K is at least ‖x‖+ n−1.

We show now that, for every n, Kn is nowhere dense in K.
Let O ⊂ K be open. We choose a polygon P ∈ O. Every point x ∈ ψP is a vertex of P

or lies on an edge Ex orthogonal to x. We may choose P such that no point of ψP is a vertex
of P belonging to an edge orthogonal to x.

If x ∈ Ex, take a, b ∈ (bd P)\Ex close to the endpoints of Ex and replace P by

Qx = conv (((ext P)\Ex) ∪ {a, b} ∪ (Bn−1(x) ∩ B‖x‖(0))).

After doing so for all (finitely many) points x ∈ ψP which are not vertices of P, we
obtain a convex body Q ∈ O.

It is easily checked that Q 6∈ Kn. As Kn is closed, a whole neighborhood of Q is
disjoint from Kn. Thus, Kn is nowhere dense. Therefore,

⋃
n∈NKn is of first Baire category.

This implies that, for most K ∈ K, at every x ∈ ψK, the lower radius of curvature of
bd K is at most ‖x‖. The theorem is proved.

Theorem 8. Let D ⊂ R2 be the unit disc of centre 0 and K ⊂ int D a convex body. If, at each
point x ∈ ψK, $i(K, x) ≤ (‖x‖+ 1)/2, then D\int K is rq-convex.

Proof. We verify the rq-property at x, y ∈ D\int K. The only interesting case is for xy
(internal) normal to both K and D (x ∈ bd K, y ∈ bd D). In this case, 0 ∈ xy. By hypothesis,
$i(K, x) ≤ (‖x‖+ 1)/2. So, Cxy has points outside of K arbitrarily close to x, and includes
a whole arc in D\K containing y. Thus, diametrally opposite points different from x, y can
be found in Cxy\K. The rq-property at x, y is verified.

Theorem 9. Let D ⊂ R2 be a disc. For most convex bodies K ⊂ D, D\int K is rq-convex.

Proof. We may assume that D is the unit disc of centre 0. For most convex bodies K ⊂ D,
0 6∈ bd K and K ⊂ int D. By Theorem 7, at each point x ∈ ψK, $i(K, x) ≤ ‖x‖ < (‖x‖+ 1)/2.

Hence, by Theorem 8, D\int K is rq-convex.
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5. Conclusions

The conjectured characterization of r-convexity in the plane does not leave much hope
for a great variety of convex bodies to be rq-convex, the two notions being equivalent in
the convex case. But for non-convex sets our paper revealed a lot of diversity.
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