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Abstract Let F be a family of sets in Rd (always d ≥ 2). A set M ⊂ Rd is called F-convex,

if for any pair of distinct points x, y ∈M , there is a set F ∈ F such that x, y ∈ F and F ⊂M .

We obtain the Γ-convexity, when F consists of Γ-paths. A Γ-path is the union of both shorter

sides of an isosceles right triangle. In this paper we first characterize some Γ-convex sets,

bounded or unbounded, including triangles, regular polygons, subsets of balls, right cylinders

and cones, unbounded planar closed convex sets, etc. Then, we investigate the Γ-starshaped

sets, and provide some conditions for a fan, a spherical sector and a right cylinder to be

Γ-starshaped. Finally, we study the Γ-triple-convexity, which is a discrete generalization of

Γ-convexity, and provide characterizations for all the 4-point sets, some 5-point sets and Zd

to be Γ-triple-convex.
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1 Introduction

The fourth author proposed a very general kind of convexity in 1974 at a meeting on

convexity in Oberwolfach. Given a family F of sets in a certain space X, a set M ⊂ X is called
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F-convex, if for any pair of distinct points x, y ∈ M , there is a set F ∈ F such that x, y ∈ F
and F ⊂M . Usual convexity, affine linearity, arc-wise connectedness, polygonal connectedness,

are just some examples of F-convexity for suitably chosen families F .

As special cases of polygonal connectedness, Bruckner and Bruckner [3], and also Magazanik

and Perles [5] investigated Ln sets, where F consists of all polygonal paths with at most n edges

in the plane; Magazanik and Perles [4] studied staircase convex sets, where F is the family of

all polygonal paths in the plane with each edge parallel to one of the coordinate axes, and all

the parallel edges having the same direction.

In 1980, Blind, Valette and the fourth author [1] first investigated rectangular convexity,

the case when F is the family of all non-degenerated rectangles, which was also studied by

Böröczky Jr [2]. In 2014, the fourth author [9] studied the right convexity, the case with F
consisting of all (2-dimensional) right triangles. Later, the last two authors [7, 8] investigated

the rt-convexity, which is a discrete generalization of the right convexity. Recently, Wang and

the last two authors [6], generalizing the right convexity once again, introduced and investigated

the poidge-convexity, the case with F consisting of the unions {x}∪σ (which are called poidges),

where x is a point, σ a line-segment, and conv({x} ∪ σ) a non-degenerate right triangle.

Now consider an isosceles right triangle. The union of its shorter sides will be called a

Γ-path. Two points of M enjoy the Γ-property, if they belong to a Γ-path included in M . A

set M will be called Γ-convex, if any two of its points enjoy the Γ-property. In this paper,

we investigate the Γ-convexity. One motivation for this research is the lasting intention of

extending the use of F-convexity to a substantial number of families F . Another motivation

resides in the obvious possible interest in Engineering to identify spaces fully accommodating

Γ-shaped solids.

For distinct points x, y ∈ Rd, where always d ≥ 2, let xy denote the (closed) line-segment

from x to y, xy the line including xy, [xy〉 the half-line from x through y, andHxy the hyperplane

through the midpoint of xy orthogonal to xy.

For any compact M ⊂ Rd, denote by CM the smallest hypersphere containing M in its

convex hull.

If L,L′ are affine subspaces of Rd, L ‖ L′ means that they are parallel and L ⊥ L′ that

they are orthogonal. By saying that one set is orthogonal to another, we mean that the affine

hulls are orthogonal.

For M ⊂ Rd, we denote by {M its complement, by convM its convex hull, by M its

affine hull and by intM, bdM, clM its relative interior, boundary and closure, which mean-

s in the topology of M . Also, let πM (x) be the orthogonal projection of x onto M . Put

a1a2 · · · an = conv {a1, a2, · · · , an}, for a1, · · · , an ∈ Rd. The distance d(x,M) from x to M

equals infy∈M ‖x− y‖.
The s-dimensional Hausdorff measure will be denoted by µs.

Let Bd be the closed unit solid ball with centre 0 in Rd, and Sd−1 = bdBd.
In Section 2 and Section 3 we characterize some Γ-convex sets, bounded or unbounded.

Some key results are as follows.

Theorem 2.3 A triangle is Γ-convex if and only if it is an isosceles right triangle.

Theorem 2.4 A regular n-gon (n ≥ 3) is Γ-convex if and only if n ≡ 0 (mod 4).

Theorem 2.9 For d ≥ 3, the right cylinder Zh of height h is Γ-convex if and only if
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‖h‖ ≤ 2.

Theorem 2.11 For d ≥ 3, the right cone P = conv (Bd−1 ∪ {p}) with πBd−1
(p) = 0 is

Γ-convex if and only if d(p,Bd−1) ≤ 1.

Theorem 3.2 An unbounded planar closed convex set M with a recession cone of angle

α is Γ-convex if and only if α ≥ π/4.

Theorem 3.5 The complement of a set included in a countable union of (d−2)-dimensional

affine subspaces of Rd is Γ-convex.

In Section 4 we investigate the Γ-starshaped sets.

Theorem 4.1 A fan is a Γ-starshaped set if its opening is at least π/2.

Theorem 4.3 For d ≥ 3, the right cylinder Zh is Γ-starshaped if and only if ‖h‖ ≤ 4.

In Section 5 we study the Γ-triple-convexity, which is a discrete generalization of Γ-convexity,

and mainly provide characterizations for all the 4-point sets, some 5-point sets and Zd to be

Γ-triple-convex.

2 Bounded Γ-Convex Sets

2.1 General Results for Planar Compact Sets

Lemma 2.1 Let K be a planar compact convex set. If any two points of bdK have the

Γ-property in K, then K is Γ-convex.

Proof Consider x, y ∈ K. If x, y ∈ bdK, the Γ-property is assumed. If {x, y} * bdK,

assume that xy ∩ bdK = {x′, y′}, and ‖x − x′‖ < ‖y − x′‖. Then there is a Γ-path ab ∪ bc
included in K containing x′, y′, with ∠abc = π/2. Suppose that x′ ∈ ab. Let Lx denote the line

parallel to ab through x, Ly the line parallel to bc through y, Lx ∩ ac = {a′}, Ly ∩ ac = {c′},
Lx ∩ Ly = {b′}. The Γ-path a′b′ ∪ b′c′ ⊂ K contains x, y. �

Theorem 2.2 For planar compact sets, Γ-convexity implies simple connectedness.

Proof Let M be a planar compact set. We suppose that M is not simply connected.

Since M is compact, it follows immediately from the assumption that the complement of M

has an open, bounded component C. Choose a maximal disc D which is contained in clC. Let

σ be its centre and choose a ∈ bdD ∩ bdM . Since C is bounded, [a, σ〉 meets M \ {a}. Then,

a and b ∈ [a, σ〉 ∩ (M \ {a}) don’t have the Γ-property. �

2.2 Polygons

Theorem 2.3 A triangle is Γ-convex if and only if it is an isosceles right triangle.

Proof For the “only if ” part, we assume that the triangle T is not an isosceles right

triangle.

If T is an obtuse triangle or a right not isosceles triangle, we denote the vertices of the two

angles less than π/2 of T by x and y. There is no Γ-path included in T containing x, y.

If T is an acute triangle, we choose a vertex of T as point x, and the point distinct from x

in bdT on the bisector of the angle at x as point y. There is no Γ-path included in T containing

x, y.

For the “if ” part, let T = abc with ∠abc = π/2. By Lemma 2.1, it is sufficient to show

that any two points x, y ∈ bdT belong to a Γ-path in T .
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Let x ∈ ab. If y ∈ bc, then x, y belong to the Γ-path ab ∪ bc. If y ∈ ac, consider the points

x1, x2 ∈ ac such that xx1 ⊥ ac, and xx2 ‖ bc. If y ∈ ax1, then x, y ∈ ax1 ∪ x1x. If y ∈ x1x2,

then x, y ∈ xx1 ∪ x1x2. If y ∈ x2c, then x, y ∈ yy′ ∪ y′a, where y′ = πab(y).

Let both x, y ∈ ac. Consider z ∈ T such that xyz be homothetic with T . The Γ-path

xz ∪ zy ⊂ T joins x with y. �

Theorem 2.4 A regular n-gon (n ≥ 3) is Γ-convex if and only if n ≡ 0 (mod 4).

Proof For the “if” part, let Rn denote a regular n-gon of centre 0. Let x be a vertex of

Rn, and y verify 〈x, y〉 = 0 and ‖x‖ = ‖y‖. Then xy ∪ y(−x) is a Γ-path. Since n ≡ 0 (mod 4),

y is also a vertex of Rn. This proves the Γ-property for the pair x,−x ∈ bdRn, which is a

diametral pair in Rn. For any pair x, x′ ∈ bdRn, xx′ divides Rn into two parts R′, R′′; put

Hxx′ ∩ bdRn = {u, v}. Assume w.l.o.g. that 0, u ∈ clR′ ⊂ Rn. Take w = (x + x′)/2. Then

∠xux′ ≤ π/2 and ∠xwx′ = π. Hence, there exists a point y ∈ uw such that xy∪yx′ is a Γ-path.

So, Rn is a Γ-convex set.

For the “only if” part, let x be a vertex of Rn and n 6≡ 0 (mod 4). Consider y ∈ bdRn such

that xy be an axis of symmetry for Rn, and put Hxy∩bdRn = {u′, v′}. Since ‖x−y‖ > ‖u′−v′‖,
the Γ-property is not available at x, y. �

2.3 Non-Convex Γ-Convex Sets

There are some examples of compact planar Γ-convex sets, which are neither convex, nor

Γ-paths.

(a) (b)

Figure 1 Examples of compact planar Γ-convex sets which are neither convex nor Γ-paths

Let S be a square. Rotate it with the angle π/4 about its centre. We get a new square S′.

Then, S ∪ S′ is a non-convex Γ-convex compact planar set different from a Γ-path, see Figure

1(a).

We can consider a regular hexagon or other regular polygons instead of a square, see Figure

1(b).

We see that in all these examples, we have line-segments in their boundaries. Is this

necessary? The answer is no.

There are compact, nonconvex Γ-convex set whose boundaries contain no line-segment, see

Figure 2.
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Figure 2 A nonconvex Γ-convex set whose boundary contains no line-segment.

There are also some compact Γ-convex sets in R3, which are neither convex, nor Γ-paths.

Consider Bd−1 ⊂ Rd, and let ‖a‖ = 1 and 0a⊥Bd−1. Then Bd−1 ∪ 0a is a Γ-convex set.

Also, several pairwise orthogonal unit balls of dimension at least 2 in Rd with centres at 0

and pairwise meeting only at 0, have a Γ-convex union.

2.4 Subsets of Balls

It is easy to prove the following.

Theorem 2.5 A ball in Rd is Γ-convex.

In this subsection we investigate the Γ-convexity of subsets of balls.

Let Ω be a Jordan (simple) arc in S1. Then ∪{0x : x ∈ Ω} is called a fan, and its angle

µ1Ω at 0 its opening.

Theorem 2.6 No fan is Γ-convex.

Proof Let F be a fan with opening α. Let a, b be the endpoints of Ω ⊂ F . The length of

Ω is ∠a0b = α.

If α < π/2, consider the midpoint c of Ω. The pair of points 0, c don’t enjoy the Γ-property.

If π/2 < α ≤ π, choose a point c ∈ Ω close to b. The Γ-property is not available at a, c.

If α > π, choose a point c ∈ Ω close to −a, between a and −a on Ω. The Γ-property is

again missing at a, c.

Finally, the case α = π/2. Let c be the midpoint of Ω. For x ∈ _
ac ⊂ Ω, y ∈ 0b, let

m(x, y) = (x+y)/2, and let n(x, y) be the point of Ω equidistant from x and y. For x = a, y = b,

n(a, b) = c and

‖m(a, b)− n(a, b)‖ < ‖a− b‖/2.

Take y close to b, such that still

‖m(a, y)− n(a, y)‖ < ‖a− y‖/2.

Clearly, 0 ∈ Cay. Now, take x close to a. Then Cxy cuts 0a in two points, one of which, say

z, is close to 0. Thus, ‖y − z‖ is close to ‖y‖ < 1 and ‖x − z‖ is close to ‖x‖ = 1 whence

‖y− z‖ < ‖x− z‖. Moreover, ‖m(x, y)− n(x, y)‖ < ‖x− y‖/2. Hence, the square with xy as a

diagonal has both vertices distinct from x, y outside F . �

In higher dimensions the situation is different. We consider the ball Bd (d ≥ 3) and the

half-space H 63 0 which meets Bd. Then S = conv ({0} ∪ (Bd ∩H)) is called a spherical cone.

Theorem 2.7 The spherical cone S is Γ-convex if d(0, H) ≤
√

2/2.
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Proof Let x, y ∈ S. Consider Sxy = Cxy ∩ Hxy. Since d(0, H) ≤
√

2/2, there exists a

point z ∈ Sxy ∩ S; thus, xz ∪ yz ⊂ S is a Γ-path. So S is Γ-convex. �

A set is called a cap, if it is the intersection of a halfspace with a ball.

Theorem 2.8 For d ≥ 3, every cap in Rd is Γ-convex.

Proof Let C be a cap. For any x, y ∈ C, let Sxy = Cxy ∩ Hxy. This is a sphere of

codimension 2. Notice that, for all positions of x, y, we have Sxy ∩ C 6= ∅. Once z ∈ Sxy ∩ C,

we have xz ∪ zy ⊂ C. Thus, C is Γ-convex. �

For d = 2, the only Γ-convex cap is the disc.

2.5 Right Cylinders and Cones

Consider the ball Bd−1 ⊂ Rd, the vector h orthogonal onto Bd−1, and the right cylinder

Zh = conv (Bd−1 ∪ (Bd−1 + h)).

Theorem 2.9 For d ≥ 3, the right cylinder Zh is Γ-convex if and only if ‖h‖ ≤ 2.

Proof To prove the “if ” part, let x, y ∈ Zh. We consider the “worst” case, when x ∈
bdBd−1 and y = h−x. Obviously, h/2 ∈ xy. Clearly, ‖(h/2)−s‖ = ‖x−y‖/2 =

√
4 + ‖h‖2/2,

for all s ∈ bd (Bd−1 + h). If s moves from y to x + h on bd (Bd−1 + h), ∠y(h/2)s varies from

0 to α = ∠y(h/2)(x + h), and α ≥ π/2 because ‖h‖ ≤ 2. Hence, for some position s∗ of s,

∠y(h/2)s∗ = π/2. Consequently, xs∗ ∪ s∗y is a Γ-path in Zh.

Now we prove the “only if ” part. If ‖h‖ > 2, we consider some diameter ab of Zh. Obviously,

the Γ-property is not available at a, b. �

Consider the ball Bd−1, the point p /∈ Bd−1, and the cone P = conv (Bd−1∪{p}). This cone

is right, if πBd−1
(p) ∈ Bd−1.

Theorem 2.10 For d ≥ 3, the right cone P = conv (Bd−1∪{p}) is Γ-convex, if d(p,Bd−1)

≤ 1.

Proof Let x, y ∈ P . Put p′ = πBd−1
(p). We consider the case x = p, y = −p′, p′ ∈

bdBd−1. Denote by m the midpoint of p(−p′); thus, πBd−1
(m) = 0. Clearly, ‖m − z‖ =

‖p + p′‖/2, for all z ∈ bdBd−1. If z moves from −p′ to p′ on bdBd−1, ∠(−p′)mz varies from

0 to α = ∠(−p′)mp′, and α > π/2 because ‖m‖ = d(p,Bd−1)/2 < 1 = ‖p′‖. Hence, for some

position z∗ of z, ∠(−p′)mz∗ = ∠pz∗(−p′) = π/2. Consequently, pz∗∪ z∗(−p′) is a Γ-path in P .

This case can be adapted for all y ∈ Bd−1\A, where A = {z ∈ Bd−1 : ‖z − p′‖ < ‖p− p′‖},
by considering half of the cone conv ((Bd−1 ∩ Cyp′) ∪ {p}).

If x = p, y ∈ bdBd−1 such that ‖p′ − y‖ < ‖p − p′‖, then ‖x − y‖ < ‖y + p′‖. Denote by

m′′ the midpoint of xy; mm′′ ⊥ p′y, so mm′′ ⊥ xy. Since ‖m′′ −m‖ = ‖y+ p′‖/2 > ‖x− y‖/2,

there is a point z ∈ mm′′ such that ‖m′′ − z‖ = ‖x− y‖/2. Then xz ∪ zy is a Γ-path in P . �

Theorem 2.11 For d ≥ 3, the right cone P = conv (Bd−1 ∪ {p}) with πBd−1
(p) = 0, is

Γ-convex if and only if d(p,Bd−1) ≤ 1.

Proof The “if” part follows from Theorem 2.10.

For the “only if” part, if d(p,Bd−1) > 1, let S0p = C0p ∩ H0p. Since the radius of S0p is

greater than 1/2, S0p ∩ P = ∅. And since d(p,Bd−1) is greater than the radius of Bd−1, there

is no Γ-path included in P containing 0, p. So, P is not Γ-convex. �

Remark If a cone is not right, it is not Γ-convex. Indeed, let P ′ be a cone that is not a
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right one; choose the apex of P ′ as x, and the farthest point y from x on the boundary of the

base of P ′. The pair of points x and y don’t enjoy the Γ-property.

3 Unbounded Γ-Convex Sets

Theorem 3.1 The non-empty intersection of two half-spaces in Rd (d ≥ 3) is Γ-convex.

Proof Let B be the intersection of the two half-spaces Hx, Hy. Consider x, y ∈ B.

The only non-trivial situation appears when bd Hx ∩ bd Hy 6= ∅, x ∈ bd Hx \ bd Hy, y ∈
bd Hy \ bd Hx. Take z ∈ H ′ ∩ bd Hx ∩ bd Hy, where H ′ is the hyperplane through x

orthogonal to xy. We have D = conv ([y(y + x − z)〉 ∪ [z, x〉) ⊂ B. Since E = cl (D \ xyz)
includes the half-disc E ∩ Cxy, x, y have the Γ-property. �

When d = 2, a slab bounded by two parallel lines is unbounded, but not Γ-convex.

Theorem 3.2 An unbounded planar closed convex set M with a recession cone of angle

α is Γ-convex if and only if α ≥ π/4.

Proof Let V be the recession cone of M with angle α at the apex 0. There are two rays

Ra, Rb such that bd V = Ra ∪Rb and the angle between them is α.

The “only if” part is obvious.

For the “if” part, let x, y ∈M .

Consider the cones Vx = V + x and Vy = V + y.

Figure 3 Vx ⊃ Vy. Figure 4 Vx 6⊃ Vy and Vy 6⊃ Vx.

First, suppose Vx ⊃ Vy. Assume w.l.o.g. that y is not closer to Rb + x than to Ra + x. Let

L
′ 3 y be a line orthogonal to Ra + x, and {y1} = L′ ∩ (Ra + x), see Figure 3. Consider the

point y2 ∈ L′ not separated from y by Ra + x, such that ∠y1xy2 = π/4. Then xy1 ∪ y1y2 ⊂ Vx
is a Γ-path containing x, y.

Suppose Vx 6⊃ Vy and Vy 6⊃ Vx, see Figure 4. Let α1 be the angle between [xy〉 and Ra + x.

The angle between [xy〉 and Rb + x is larger than α ≥ π/4. Analogously, the angle between

[yx〉 and Ra + y is larger than π/4. Therefore, for some z ∈ conv (Rb + x ∪ Ra + y) ⊂ M ,

∠yxz = ∠xyz = π/4, and xz ∪ zy is a suitable Γ-path. �

Theorem 3.3 Let M be an unbounded planar closed convex set with a recession cone of

angle α. Then cl {M is Γ-convex if α ≥ π/2.
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Proof It suffices to show that, for any pair of points x, y ∈ bdM , there exists a Γ-path

in cl {M containing x, y. Consider a point z such that xz be a supporting line of M at x and

yz a supporting line of M at y. Clearly, ∠xzy ≥ α. Consider the isosceles right triangle xyu,

such that xy does not separate u from z.

Figure 5 z ∈ xyu.

If z ∈ xyu, then xu ∪ uy is a suitable Γ-path (see Figure 5).

Figure 6 z /∈ xyu.

If z /∈ xyu, assume w.l.o.g. that ∠zxy > π/4 (see Figure 6). Then ∠xyz < π/4, and

‖x − z‖ < ‖y − z‖. Put v = πxz(y). We have ‖x − v‖ < ‖y − v‖. Take the point w such that

x ∈ wv and ‖w − v‖ = ‖y − v‖. Now, wv ∪ vy is a suitable Γ-path. �

A set M ⊂ Rd is called acyclic, if it includes no sphere of dimension dim M − 1.

Theorem 3.4 If M ⊂ Rd is an acyclic set included in a hyperplane, then {M is Γ-convex.

Proof Let x, y /∈M . The existence of a Γ-path from x to y is obvious if x and y are not

separated by M . Suppose now they are separated by M . It follows that M is a hyperplane.

Then Sxy = Cxy ∩M is a sphere of dimension d − 2. Since M is an acyclic set, there exists a

point z ∈ Sxy\M . Then, ∠xzy = π/2. This implies the existence of a Γ-path including {x, y},
contained in {M . �

Theorem 3.5 The complement of a set included in a countable union of (d−2)-dimensional

affine subspaces of Rd is Γ-convex.
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Proof Let M ⊂ Rd be a set as described in the statement. Thus, M ⊂
∞⋃
n=1

An, where

each An is an affine subspace of Rd of codimension 2.

Choose x, y ∈ {M . Let

σn =

{
z − x
‖z − x‖

: z ∈ An
}
⊂ Sd−1.

Since the (d−1)-dimensional measure µd−1(σn) of each σn is 0, we also have
∑∞
n=1 µd−1(σn)

= 0. Consider the half-line Lτ of direction τ starting at x. It follows that µd−1(∪τ∈S(Lτ ∩
Sd−1)) = 0, where S = ∪∞n=1σn. Hence, µd−1(∪τ∈S(Lτ∩Sd−1)) = 0. This yields µd−1(∪τ∈S(Lτ∩
Cxy)) = 0. Hence, for almost all z ∈ Cxy, xz ∩M = ∅. Analogously, yz ∩M = ∅ for almost all

z ∈ Cxy. Hence, we find z ∈ Cxy such that xz ∪ yz ⊂ {M . Since xz ⊥ yz, {M is Γ-convex. �

4 Γ-Starshaped Sets

If there exists a point k ∈ M such that for any x ∈ M , k, x enjoy the Γ-property in M ,

then M is a Γ-starshaped set relative to the point k. The set of points in M which can play

the role of k form the kernel of M and is denoted by kerΓ(M).

Theorem 4.1 A fan is a Γ-starshaped set if its opening is at least π/2.

Proof Let F be a fan with opening α. Let a, b be the endpoints of Ω ⊂ F (from the

definition of a fan). The length of Ω is ∠a0b = α. Consider the arbitrary point y ∈ F\{0};
then, ∠a0y ≥ π/4 or ∠b0y ≥ π/4 since α ≥ π/2. There exists a Γ-path in F with 0 and y as

endpoints. So, F is a Γ-starshaped set. �

Consider a, b, c ∈ S2. Then C = B3 ∩ conv ([0a〉 ∪ [0b〉 ∪ [0c〉) is called the spherical sector

determined by a, b, c.

Theorem 4.2 If a, b, c ∈ S2, ∠a0c,∠b0c ≥ π/2, then the spherical sector determined by

a, b, c is Γ-starshaped.

Figure 7 A spherical sector determined by a, b, c with ∠a0c,∠b0c ≥ π/2.

Proof Consider d ∈ ab, i.e. d = αa+βb, where α, β ≥ 0 and α+β = 1, see Figure 7. Since

∠a0c,∠b0c ≥ π/2, 〈a, c〉 ≤ 0 and 〈b, c〉 ≤ 0. Then 〈d, c〉 = 〈αa+ βb, c〉 = α 〈a, c〉+ β 〈b, c〉 ≤ 0,
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whence ∠d0c ≥ π/2. Let C be the given spherical sector and y ∈ C \{0}. Then c0y∩C is a fan

with opening at least π/2. According to the proof of Theorem 4.1, 0, y enjoy the Γ-property.

�

Theorem 4.3 For d ≥ 3, the right cylinder Zh is Γ-starshaped if and only if ‖h‖ ≤ 4.

Proof The “only if” part is obvious.

For the “if” part, let x ∈ Zh. By applying Theorem 2.9 in the cylinders conv (Bd−1 ∪
(Bd−1 +h/2)) and conv ((Bd−1 +h/2)∪ (Bd−1 +h)), we see that x and h/2 enjoy the Γ-property

in Zh. �

Let Rn = conv {x1, x2, · · · , xn} ⊂ R2 (n ≥ 3) be a regular n-gon of centre 0, and Dn be

the intersection of the n discs with the n vertices of Rn as centres, and the diameter of Rn as

radii.

Theorem 4.4 For every n ≥ 3, Dn is Γ-starshaped.

Proof It is obvious that 0 is the centre of Dn and Dn is convex. For any point x ∈ bdDn,

we prove that 0 and x enjoy the Γ-property. Let H0x ∩bdDn = {z1, z2}; then, ‖z1‖ = ‖x− z1‖
and ∠0xz1 > π/4. There is a point z ∈ conv {0, z1, x} ⊂ Dn such that 0z ∪ zx is a suitable

Γ-path. �

Theorem 4.5 Dn is Γ-convex if and only if n ≡ 0 (mod 4).

Proof The proof is similar to the proof of Theorem 2.4. �

5 Γ-Triple-Convexity

Let M ⊂ Rd. A Γ-triple is the vertex set of an isosceles right triangle. A pair of points

in M is said to enjoy the Γt-property in M , if there exists a third point in M , such that the

three points form a Γ-triple. A set M ⊂ Rd is called Γ-triple convex, or Γt-convex if any pair

of points in M enjoys the Γt-property.

Theorem 5.1 A set of four points is Γt-convex, if and only if it is one of the following:

(1) The set of the four vertices of a square.

(2) The set of the vertices and the circumcenter of an isosceles right triangle.

(3) A set similar to {0, (1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3.

Proof The “if” part is obvious.

For the “only if” part: Let M = {a, b, c, d} be a Γt-convex set. Assume that {a, b, c} is a

Γ-triple, and ∠abc = π/2. Since M is Γt-convex, at least two triples among {a, b, d}, {a, c, d},
{b, c, d} are Γ-triples. Hence, at least one triple of {a, b, d}, {b, c, d} is a Γ-triple. Assume w.l.o.g.

that {a, b, d} is a Γ-triple. The possible positions of d are those shown in Figure 8, plus those

obtained after a rotation about ab. Let Sxy denote the circle with centre x and radius ‖x− y‖,
orthogonal to xy.

Case 1. {a, b, d}, {a, c, d} are Γ-triples.

Among all positions of d mentioned above, only the positions d2 and d5 in Figure 8 give

Γ-triples. These are the alternatives (1) and (2) in the statement.



No.1 Z.Q. Jia et al: Γ-CONVEXITY 11

Figure 8 {a, b, d}, {b, c, d} are Γ-triples.

Case 2. {a, b, d}, {b, c, d} are Γ-triples.

Among all positions of d mentioned above, {b, c, d} becomes a Γ-triple only if d is d2 in

Figure 8, or d is d4 in Figure 8, or d takes the position of c after the mentioned rotation, of

π/2. These correspond to alternatives (1), (2) and (3) of the statement, respectively. �

For the next two theorems we omit the elementary, but lengthy proofs.

Theorem 5.2 A set {a, b, c, d, e} ⊂ R3 of five points with a 4-point Γt-convex subset is

Γt-convex, if and only if one of the following happens:

(1) abcd is a square, e is the centre of abcd.

(2) a, b, c, d, e are the vertices of a regular octahedron minus one of them.

(3) abcd is a square, ecb is an isosceles triangle such that ‖e− c‖ = ‖e− b‖ = ‖c−a‖ = and

ec⊥ca.

(4) abcd is a square and ade is an equilateral triangle orthogonal to ab.

(5) abc and ace are orthogonal isosceles right triangles with the common hypotenuse ac.

Figure 9 (1) Figure 10 (2) Figure 11 (3)
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Figure 12 (4) Figure 13 (5)

Theorem 5.3 A planar 5-point set is Γt-convex if and only if it is the set of four vertices

and the centre of a square.

The Γt-convexity can also be investigated in infinite discrete sets, for example in lattices.

Theorem 5.4 Zd is Γt-convex if and only if d is even.

Proof For the “if” part: It suffices to prove the Γt-property for the points v = (x1, x2,

x3, x4, · · · , xd−1, xd), 0 ∈ Zd. We just have to take w = (−x2, x1,−x4, x3, · · · ,−xd, xd−1);

then {v,0, w} is a Γ-triple, and thus Zd is Γt-convex.

For the “only if” part: Let v = (1, 1, · · · , 1), 0 ∈ Zd. The existence of a point w =

(x1, x2, · · · , xd) ∈ Zd such that 〈w, v〉 = 0 and ‖w‖ = ‖v‖ means that{
x1 + x2 + · · ·+ xd = 0,

x2
1 + x2

2 + · · ·+ x2
d = d.

Since 0 and d have the same parity, d is even. �

If a set is Γt-convex, it is obviously rt-convex and it-convex. An F-convex set is rt-convex

(it-convex), if F is the family of all vertex-sets of right (resp. isosceles) triangles. Conversely, if

a set is rt-convex and it-convex, it does not have to be Γt-convex. Indeed, a rectangle different

from a square is rt-convex and it-convex, but not Γt-convex.

There are non-convex sets with Γt-convex complements. For example: the interior of the

polygon shown in Figure 14 (a); a fan with opening α ∈ (π, 3π/2]; the union of an equilateral

triangle with the triangle symmetric with respect to its centre, see Figure 14 (b).

(a) (b)

Figure 14 Examples of non-convex sets with Γt-convex complements.
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A set M in a subspace X of Rd is hyper-Γt-convex in X, if it is Γt-convex and, for any

point s ∈ X\M , the set M ∪ {s} is Γt-convex, too.

Theorem 5.5 The complement of any open convex set in Rd is hyper-Γt-convex in Rd.

Proof Let M ⊂ Rd be an open convex set. Consider x ∈ Rd, y ∈ {(M ∪ {x}). Let

F = {z | ∠xyz = π/2 and ‖x − y‖ = ‖z − y‖}. There is at least one point z ∈ F\M .

Indeed, otherwise, for two points z1, z2 diametrally opposite in the (d− 2)-dimensional sphere

F , y ∈ z1z2. Since M is convex, y ∈ M , which contradicts y ∈ {M . So, there exists a point

z ∈ {M such that {x, y, z} be a Γ-triple. �

Consider the subset Zd ⊂ Zd defined by Zd = Zd−1 × {1, 2, 3, · · · }.
Theorem 5.6 The set Zd is hyper-Γt-convex in Zd, if d is even.

Proof To prove the theorem, it suffices to show that, for any v ∈ Zk,d = Zd−1 × {k, k +

1, k + 2, · · · }, there exists w ∈ Zk,d, such that {0, v, w} be a Γ-triple.

Consider v = (x1, x2, x3, x4, · · · , xd−1, xd). If xd−1 ≥ 0, we take w+ = (−x2, x1, −x4, x3,

· · · , −xd, xd−1) ∈ Zd; then {v,0, w+} is a Γ-triple. If xd−1 < 0, we take w− = (x2, −x1, x4,

−x3, · · · , xd, −xd−1) ∈ Zd; then {v,0, w−} is also a Γ-triple.

For xd−1 ≥ 0, take w = v+w+ = (x1−x2, x2+x1, x3−x4, x4+x3, · · · , xd−1−xd, xd+xd−1).

For xd−1 < 0, take w = v+w− = (x1 + x2, x2− x1, x3 + x4, x4− x3, · · · , xd−1 + xd, xd− xd−1).

In this way, v ∈ Zk,d implies w ∈ Zk,d, and {0, v, w} is a Γ-triple. �
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