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Abstract
In this paper, we introduce o-extreme points defined by
using orthogonal paths in orthogonally connected sets.
We investigate their properties and obtain Minkowski-
type theorems involving orthogonally connected sets.
Using o-extreme points, we give some characterizations
of staircase connectedness.
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1 INTRODUCTION

Convex sets are a very fruitful concept in geometry, having applications in optimization, statistics,
computational geometry, functional analysis, and combinatorics. In several application areas of
computational geometry, very large-scale integrated (VLSI) circuits and digital image processing,
the only lines of interest are lines in the Euclidean plane parallel to the 𝑥- or 𝑦-coordinate axes.
This is so, because orthogonal polygons, which are connected unions of finitelymany planar boxes
whose edges are parallel to the coordinate axes, are frequently used as building blocks for VLSI
layout and wire routing, and also used in image processing to describe images on rectangular
grids. This gives rise, in a natural way, to orthogonally convex sets.
Montuno and Fournier [12] introduced the notion of orthogonal convexity in orthogonal poly-

gons. Nicholl, Lee, Liao, and Wong [13] also worked with the orthogonal convexity in orthogonal
polygons, and gave the definition of a staircase. Ottmann, Soisalon-Soininen, and Wood [14]
generalized the orthogonal convexity to any sets and defined orthogonal connectedness and
staircase connectedness. Rawlins and Wood [15] gave some characterizations of orthogonally
convex polygons.
A set𝑀 ⊂ ℝ2 is horizontally convex (vertically convex), if𝑀 includes every horizontal (vertical)

line-segment with endpoints in𝑀. If𝑀 is both horizontally and vertically convex, we say that𝑀
is orthogonally convex. It is clear that convex sets are orthogonally convex.
A polygonal path 𝑃 in ℝ2 is called orthogonal, if every edge of 𝑃 is parallel to one of the coordi-

nate axes. A set𝑀 ⊂ ℝ2 is orthogonally connected, if every two points 𝑝, 𝑞 ∈ 𝑀 can be joined by
an orthogonal path in𝑀.
An orthogonal path is a staircase, if all horizontal edges point in the same direction, and all

vertical edges point in the same direction. A set𝑀 ⊂ ℝ2 is staircase connected, if every two points
𝑝, 𝑞 ∈ 𝑀 can be joined by a staircase in𝑀.
Breen investigated the staircase visibility in orthogonal polygons (see [1–4]). Magazanik and

Perles [10] extended the investigation of staircase visibility from an orthogonal polygon to an
arbitrary set.

Lemma 1.1 [10], Proposition 1.1. A set in ℝ2 is staircase connected if and only if it is orthogonally
connected and orthogonally convex.

For the staircase visibility, Breen established a Helly-type theorem for a finite family of simply
connected orthogonal polygons [5], and then extended it to a family of planar compact sets having
connected complements [6]. Moreover, she investigated the staircase connectedness of the union
of a finite family  of boxes in ℝ𝑑, when the intersection graph of  is a tree [7], or a connected
block graph [8].
For any convex set𝑀 ⊂ ℝ2, a point of𝑀 is called an extreme point of𝑀, if it is not the middle

point of any line-segment in𝑀. Let ext𝑀 denote the set of all extreme points of𝑀.
Minkowski [11] proved the following fundamental theorem.

Theorem 1.2. Let𝑀 be a compact convex subset of ℝ𝑑 . Then𝑀 = conv(ext𝑀).

We shall establish here theorems of Minkowski type.
The rest of this paper is organized as follows. We introduce o-extreme points defined by using

orthogonal paths in orthogonally connected sets, and obtain Minkowski-type theorems in Sec-
tion 2. Section 3 gives some characterizations of staircase connectedness using o-extreme points.
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F IGURE 2 . 1 𝑥 ∈ oxt𝑀.

The following notationwill be used. For 𝑎, 𝑏 ∈ ℝ2, 𝑎𝑏 denotes the line through 𝑎 and 𝑏. For any
set𝑀 ⊂ ℝ2, we denote by int𝑀 the interior of𝑀, by bd𝑀 the boundary of𝑀, by cl𝑀 the closure
of𝑀, by ∁𝑀 the complement of𝑀, and by conv𝑀 the convex hull of𝑀. For 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℝ2,
set

𝑎1𝑎2⋯𝑎𝑛 = conv{𝑎1, 𝑎2, … , 𝑎𝑛}.

2 O-EXTREME POINTS

Generalizing the classical notion of extremality from convexity, we say that, for any set𝑀 ⊂ ℝ2, a
point 𝑥 ∈ 𝑀 is extreme in𝑀, if it is not the middle point of any line-segment in𝑀. The set of all
extreme points in𝑀 is denoted by ext𝑀.
Let𝑀 ⊂ ℝ2 be orthogonally connected. A point 𝑥 ∈ 𝑀 is o-extreme in𝑀, if it belongs only as

an endpoint to an orthogonal path in𝑀. The set of all o-extreme points of𝑀 is denoted by oxt𝑀.

Theorem 2.1. If the topological disc𝑀 is orthogonally connected, then oxt𝑀 ⊂ ext𝑀.

Proof. Consider 𝑥 ∈ oxt𝑀 and suppose 𝑥 ∉ ext𝑀. Then, there exist two points 𝑢, 𝑣 ∈ 𝑀 such that
𝑥 ∈ int𝑢𝑣 and 𝑢𝑣 ⊂ 𝑀. Since 𝑥 is o-extreme, 𝑢𝑣 is neither horizontal nor vertical.
If 𝑥 ∈ int𝑀, then 𝑥 ∉ oxt𝑀, whence 𝑥 ∈ bd𝑀, see Figure 2.1. Note that, since𝑀 is a topological

disc, the boundary point 𝑥 of𝑀, which is themidpoint of the line-segment 𝑢𝑣 ⊂ 𝑀 is not the limit
point of sequences of points not belonging to𝑀 and approaching from both sides of 𝑢𝑣. Indeed, if
such sequences existed, the points could be joined by Jordan arcs in ∁𝑀, and their limit would be a
continuum 𝐶 with 𝐶 ∩𝑀 = {𝑥}; thus, 𝑥 would be a cut point of𝑀 (separating 𝑢 from 𝑣), which is
impossible. Take an open disc𝐷 of center 𝑥. If𝐷 is small enough,𝐷 ⧵ 𝑢𝑣 is disconnected, and one
(and only one) component of 𝐷 ⧵ 𝑢𝑣 is included in int𝑀. Thus, in𝑀 there exist both horizontal
and vertical line-segments starting from 𝑥, which means that 𝑥 is not an o-extreme point of 𝑀,
and a contradiction is obtained. □

Notice that, if𝑀 is not a topological disc, the inclusion does not necessarily hold. For example,
let𝑀 = 𝑎𝑏𝑐 ⧵ int𝑑𝑒𝑓, where 𝑏𝑐 and 𝑑𝑒 are horizontal, and ∠𝑒𝑑𝑓 > 𝜋

2
, see Figure 2.2. Then𝑀 is

orthogonally connected and 𝑑 is o-extreme, but not extreme.
In general, ext𝑀 ⊄ oxt𝑀. For example, consider a rectangle with edges parallel to the coordi-

nate axes. Each of its vertices is extreme, but not o-extreme. This example also shows that not
every compact orthogonally connected set has o-extreme points. Clearly, for any orthogonally
connected set𝑀, if 𝑥 is o-extreme, then𝑀 ⧵ {𝑥} is orthogonally connected.
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4 of 13 DU et al.

F IGURE 2 . 2 𝑑 is o-extremal, but not extremal.

F IGURE 2 . 3 𝑥 is not o-extremal.

In [9], the following definitions appear. For 𝑥 ∈ 𝑀, let

hw𝑀(𝑥) = max
𝑦,𝑦′∈𝑀

{‖𝑦 − 𝑦′‖∶ 𝑥 ∈ 𝑦𝑦′ ⊂ 𝑀 and 𝑦𝑦′ is horizontal
}
,

vw𝑀(𝑥) = max
𝑦,𝑦′∈𝑀

{‖𝑦 − 𝑦′‖∶ 𝑥 ∈ 𝑦𝑦′ ⊂ 𝑀 and 𝑦𝑦′ is vertical
}
.

If𝑀 is orthogonally connected, for any 𝑥 ∈ 𝑀,

hw𝑀(𝑥) + vw𝑀(𝑥) > 0,

but for any 𝑥 ∈ oxt𝑀,

hw𝑀(𝑥) ⋅ vw𝑀(𝑥) = 0.

However, this equality can hold without 𝑥 being o-extreme (see the example in Figure 2.3).
We say that a line 𝐿 supports a set 𝑀 ⊂ ℝ2 at a point 𝑥 ∈ 𝑀, if 𝑥 ∈ 𝐿 and 𝑀 lies completely

in one of the two closed half-planes determined by 𝐿. Next, we obtain a necessary and sufficient
condition for a point to be an o-extreme point.

Theorem 2.2. If the set 𝑀 is staircase connected, then 𝑥 ∈ 𝑀 is an o-extreme point if and only if
there exists a horizontal or vertical supporting line 𝐿 of𝑀 such that 𝐿 ∩𝑀 = {𝑥}.

Proof. For the “only if” part, let 𝑥 ∈ oxt𝑀. Then 𝑥 ∈ bd𝑀. Since𝑀 is staircase connected, there
exists a horizontal or vertical line-segment 𝑢𝑥 in𝑀. Without loss of generality, suppose that 𝑢𝑥 is
horizontal. Next we prove that there exists a vertical supporting line of𝑀 at 𝑥. Indeed, otherwise,
there exists a point 𝑣 ∈ 𝑀 such that 𝑢 and 𝑣 are separated by the vertical line 𝐿 through 𝑥, see
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ON ORTHOGONAL AND STAIRCASE CONNECTEDNESS IN THE PLANE 5 of 13

F IGURE 2 . 4 𝑢 and 𝑣 are separated by the vertical line 𝐿.

F IGURE 2 . 5 𝑀1 and𝑀2 are not staircase connected.

Figure 2.4. Due to the staircase connectedness of 𝑀, there exists a staircase 𝑃 ⊂ 𝑀 that joins 𝑥
and 𝑣. Hence, the staircase 𝑢𝑥 ∪ 𝑃 ⊂ 𝑀 contains 𝑥 not as an endpoint, which contradicts 𝑥 ∈

oxt𝑀. Thus, 𝐿 is a supporting line of𝑀. Because 𝑢𝑥 is horizontal and 𝑥 is an o-extreme point, the
staircase connectedness of𝑀 implies 𝐿 ∩𝑀 = {𝑥}.
For the “if” part, there exists a horizontal or vertical supporting line 𝐿 of 𝑀 at 𝑥 ∈ 𝑀 such

that 𝐿 ∩𝑀 = {𝑥}. Any staircase in 𝑀 starting at 𝑥 obviously has 𝑥 as an endpoint. Therefore,
𝑥 ∈ oxt𝑀. □

The staircase connectedness in Theorem 2.2 is necessary. For example, in Figure 2.5, both𝑀1

and 𝑀2 are orthogonally connected, but not staircase connected. One can see that 𝑥 is an o-
extreme point of 𝑀1, as well as 𝑀2, but no horizontal or vertical line supports 𝑀1 at 𝑥, or, if
they do, both the horizontal and vertical lines through 𝑥 intersect𝑀2 in more than one point.
For 𝐴 ⊂ 𝑀, oconv𝑀(𝐴) denotes the union of all orthogonal paths included in𝑀 with the end-

points in 𝐴. The following theorem and Corollary 2.5 give sufficient conditions for a set 𝑀 to
satisfy oconv𝑀(oxt𝑀) = 𝑀.

Theorem 2.3. If 𝑀 ⊂ ℝ2 is compact, orthogonally connected, and convex, and card(oxt𝑀) ⩾ 2,
then oconv𝑀(oxt𝑀) = 𝑀.

Proof. Since card(oxt𝑀) ⩾ 2, we find two o-extreme points 𝑢, 𝑣 ∈ 𝑀. There exist two line-
segments, horizontal or vertical, 𝑢𝑢′ ⊂ 𝑀 and 𝑣𝑣′ ⊂ 𝑀.
Let 𝑥 ∈ 𝑀. If 𝑥 ∈ oxt𝑀, then obviously 𝑥 ∈ oconv𝑀(oxt𝑀). If 𝑥 ∉ oxt𝑀, then there are two

line-segments, horizontal or vertical, 𝑥𝑥1 ⊂ 𝑀, 𝑥𝑥2 ⊂ 𝑀, see Figure 2.6. We easily find two
orthogonal paths 𝑃𝑢 from 𝑢 to 𝑥 and 𝑃𝑣 from 𝑣 to 𝑥 such that 𝑃 = 𝑃𝑢 ∪ 𝑃𝑣 ⊂ 𝑢𝑢′𝑣𝑣′𝑥2𝑥𝑥1
and 𝑃𝑢 ∩ 𝑃𝑣 = {𝑥}. Thus, 𝑥 belongs to the path 𝑃, which joins 𝑢 and 𝑣 inside 𝑀, that is, 𝑥 ∈

oconv𝑀(oxt𝑀). □
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6 of 13 DU et al.

F IGURE 2 . 6 𝑥 ∉ oxt𝑀.

F IGURE 2 . 7 Horizontal lines 𝐿1, 𝐿3 support𝑀.

Theorem 2.4. If 𝑀 ⊂ ℝ2 is compact, orthogonally connected, and strictly convex, then
card(oxt𝑀) = 4.

Proof. There are two distinct horizontal lines 𝐿1, 𝐿3 supporting 𝑀 at 𝑢1, 𝑢3, respectively, see
Figure 2.7. Since 𝑀 is strictly convex, 𝐿1 ∩ 𝑀 = {𝑢1}, 𝐿3 ∩ 𝑀 = {𝑢3}, which implies that 𝑢1 and
𝑢3 are o-extreme. Analogously, the two vertical lines 𝐿2, 𝐿4 supporting𝑀 determine other points
𝑢2, 𝑢4. We prove that these four points 𝑢1, 𝑢2, 𝑢3, 𝑢4 are distinct. Indeed, suppose 𝑢1 = 𝑢2. We have
𝐿1 ∩ 𝑀 = {𝑢1} and 𝐿2 ∩ 𝑀 = {𝑢1}. So, no horizontal or vertical line-segment included in𝑀 starts
at 𝑢1, contradicting the orthogonal connectedness of𝑀.
Let 𝑥 belong to 𝑀 ⧵ {𝑢1, 𝑢2, 𝑢3, 𝑢4}. If 𝑥 ∈ int𝑀, then 𝑥 ∉ oxt𝑀. If 𝑥 ∈ bd𝑀, without loss of

generality suppose that 𝑥 is between 𝑢1 and 𝑢2. There exists an orthogonal path passing through
𝑥, see Figure 2.7. Hence, 𝑥 is not o-extreme. Therefore, only 𝑢1, 𝑢2, 𝑢3, and 𝑢4 are o-extreme points
in𝑀. □

We obtain the following corollary from Theorems 2.3 and 2.4.

Corollary 2.5. If 𝑀 ⊂ ℝ2 is compact, orthogonally connected, and strictly convex, then
oconv𝑀(oxt𝑀) = 𝑀.

For𝐴 ⊂ 𝑀, let sconv𝑀(𝐴) be the union of all staircases included in𝑀 with the endpoints in𝐴.
Clearly, sconv𝑀(𝐴) ⊂ oconv𝑀(𝐴), but the inverse inclusion is not necessarily valid. For example,
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ON ORTHOGONAL AND STAIRCASE CONNECTEDNESS IN THE PLANE 7 of 13

F IGURE 2 . 8 oconv𝑀(𝐴) ⊄ sconv𝑀(𝐴).

F IGURE 2 . 9 𝑀.

let 𝑀 be a rectangle, 𝑥 be a vertex of 𝑀, and 𝑦 be an interior point of 𝑀. Let 𝑆 be the rectangle
with 𝑥𝑦 as a diagonal, see Figure 2.8. Set 𝐴 = {𝑥, 𝑦}. Then sconv𝑀(𝐴) = 𝑆 and oconv𝑀(𝐴) = 𝑀.
The following result is a strengthening of Corollary 2.5.

Theorem 2.6. If 𝑀 ⊂ ℝ2 is compact, orthogonally connected, and strictly convex, then
sconv𝑀(oxt𝑀) = 𝑀.

Proof. From Theorem 2.4, we know that card(oxt𝑀) = 4. Suppose oxt𝑀 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}, see
Figure 2.9. By definition, sconv𝑀(oxt𝑀) ⊂ 𝑀. So we only need to show that 𝑀 is a subset of
sconv𝑀(oxt𝑀).
The set 𝑀 can be divided into at most nine parts by the vertical lines through 𝑢1, 𝑢3 and the

horizontal lines through 𝑢2, 𝑢4, see Figure 2.9. Assume 𝑥 ∈ 𝑀 belongs to part 1. Figure 2.9 shows
a staircase from 𝑢4 to 𝑢1 passing through 𝑥. This can be analogously done for any location of 𝑥.
Thus,𝑀 ⊂ sconv𝑀(oxt𝑀). □

However, this does not remain true for 𝑀 convex, but not strictly convex. For example, see
Figure 2.10. In this case, oxt𝑀 = {𝑢1, 𝑢2, 𝑢3}, sconv𝑀({𝑢1, 𝑢2}) = 𝐴 ∪ 𝐵, sconv𝑀({𝑢2, 𝑢3}) = 𝐶,
sconv𝑀({𝑢1, 𝑢3}) = 𝐴 ∪ 𝐷. Thus, sconv𝑀(oxt𝑀) = 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐷 ≠ 𝑀.

3 ORTHOGONAL AND STAIRCASE CONNECTEDNESS

In [10], Magazanik and Perles proved that a set in the plane is staircase connected if and
only if it is orthogonally connected and orthogonally convex. In this section, we shall look
deeper into the relationship between orthogonal and staircase connectedness, and present some
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8 of 13 DU et al.

F IGURE 2 . 1 0 𝑀 is convex, but not strictly convex.

characterizations of staircase connected sets by using orthogonal connectedness and o-extreme
points.

Theorem 3.1. Any connected open set is orthogonally connected.

Proof. For any connected open set 𝐴 and 𝑎 ∈ 𝐴, let

𝑀𝑎 = {𝑏 ∈ 𝐴∶ 𝑎 and 𝑏 are joined by an orthogonal path included in 𝐴},

and 𝑆𝑎 = 𝐴 ⧵𝑀𝑎. It is clear that 𝑀𝑎 ≠ ∅. If 𝑆𝑎 ≠ ∅, it follows from the connectedness of 𝐴 that
𝑀𝑎 ∩ bd𝑆𝑎 ≠ ∅ or (bd𝑀𝑎) ∩ 𝑆𝑎 ≠ ∅.
If 𝑀𝑎 ∩ bd𝑆𝑎 ≠ ∅, let 𝑏 ∈ 𝑀𝑎 ∩ bd𝑆𝑎. Since 𝐴 is an open set, there exists an open ball 𝐵 ⊂ 𝐴

with center 𝑏. We have 𝐵 ∩ 𝑆𝑎 ≠ ∅. Let 𝑐 ∈ 𝐵 ∩ 𝑆𝑎. The points 𝑏 and 𝑐 are joined by an orthogonal
path in 𝐵. Thus, 𝑎 and 𝑐 are connected by an orthogonal path in 𝐴, which contradicts 𝑐 ∈ 𝑆𝑎.
If (bd𝑀𝑎) ∩ 𝑆𝑎 ≠ ∅, let 𝑏 ∈ (bd𝑀𝑎) ∩ 𝑆𝑎. Since 𝐴 is open, there exists an open ball 𝐵 ⊂ 𝐴 with

center 𝑏. Then 𝐵 ∩𝑀𝑎 ≠ ∅. Set 𝑐 ∈ 𝐵 ∩𝑀𝑎. It is clear that the points 𝑏 and 𝑐 are connected by
an orthogonal path in 𝐵. Thus, 𝑎 and 𝑏 are joined by an orthogonal path in 𝐴, which contradicts
𝑏 ∈ 𝑆𝑎.
Therefore, 𝑆𝑎 = ∅, so 𝑀𝑎 = 𝐴. Due to the arbitrary choice of 𝑎, 𝑀 is orthogonally

connected. □

The following corollary immediately follows from Lemma 1.1 and Theorem 3.1.

Corollary 3.2. Any connected open orthogonally convex set is staircase connected.

A connected union of two orthogonally connected sets is obviously orthogonally connected.
But it is not necessarily staircase connected, even if the two sets are both staircase connected. The
same is true for convex bodies. For example, see Figure 3.2.

Theorem3.3. If the connectedunion𝑀 of finitelymany smooth convex bodies is staircase connected,
then cl∁𝑀 is orthogonally connected and has no o-extreme point.

Proof. For any 𝑢 ∈ ∁𝑀, there are horizontal line-segments and vertical line-segments containing
𝑢 not as an endpoint and included in ∁𝑀. For any 𝑢 ∈ bd∁𝑀, let 𝐿1 and 𝐿2 be the horizontal line
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ON ORTHOGONAL AND STAIRCASE CONNECTEDNESS IN THE PLANE 9 of 13

F IGURE 3 . 1 𝑎𝑏 ⊄ 𝑀.

and the vertical line through 𝑢, respectively, and𝐷 be a small disc centered at 𝑢. Then𝐷 is divided
into four parts by 𝐿1 and 𝐿2. Since𝑀 is staircase connected, there are atmost three parts including
points in𝑀, which implies that there exists an orthogonal path through 𝑢 included in cl∁𝑀. So
cl∁𝑀 has no o-extreme point.
By Lemma 1.1, since 𝑀 is staircase connected, 𝑀 is orthogonally convex, and so it is simply

connected. Hence, ∁𝑀 is an unbounded and connected open set. Therefore, for any 𝑢, 𝑣 ∈ cl∁𝑀,
there exist points 𝑥, 𝑦 ∈ ∁𝑀 such that the line-segments 𝑢𝑥, 𝑣𝑦 ⊂ cl∁𝑀 are horizontal or vertical.
From Theorem 3.1, we know that ∁𝑀 is orthogonally connected. Thus, 𝑢 and 𝑣 are connected by
an orthogonal path in cl∁𝑀. Hence, cl∁𝑀 is orthogonally connected. □

Theorem 3.4. The union of two smooth convex bodies having more than one point in common is
staircase connected, if and only if the closure of its complement is orthogonally connected and has no
o-extreme point.

Proof. The “only if” part follows immediately from Theorem 3.3. So we only need to prove the
“if” implication. We first show that, if 𝐴, 𝐵 are the two convex bodies,𝑀 = 𝐴 ∪ 𝐵 is orthogonally
convex. Suppose that𝑀 is not orthogonally convex. Then there exist two points 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵

such that 𝑎𝑏 is vertical or horizontal, but 𝑎𝑏 ⊄ 𝑀. Without loss of generality, assume that 𝑎𝑏
is vertical. Let 𝑐 be the closest point in 𝐴 ∩ 𝐵 to 𝑎𝑏. Then 𝑐 belongs to the relative boundary of
𝐴 ∩ 𝐵, whence it does not belong to the relative interior of𝐴 ∩ 𝐵, and therefore 𝑐 ∉ int𝑀. Hence,
𝑐 ∈ bd(cl∁𝑀).
Consider the supporting lines 𝐿𝑎 of 𝐴 and 𝐿𝑏 of 𝐵 at the common point 𝑐. Since both 𝐿𝑎 and 𝐿𝑏

meet 𝑎𝑏, see Figure 3.1, no vertical line-segment included in cl∁𝑀 starts at 𝑐. Since 𝐴 ∩ 𝐵 is not
a single point, no horizontal line-segment included in cl∁𝑀 starts at 𝑐 in the direction away from
𝑎𝑏. Hence, 𝑐 is an o-extreme point of cl∁𝑀, which contradicts the assumption that cl∁𝑀 has no
o-extreme points. Therefore,𝑀 is orthogonally convex.
Since 𝐴 and 𝐵 are smooth convex bodies, 𝑀 is orthogonally connected. By Lemma 1.1, 𝑀 is

staircase connected. □

The condition card(𝐴 ∩ 𝐵) ⩾ 2 in Theorem 3.4 is necessary. For example, see Figure 3.2: The
closure of the complement of 𝐴 ∪ 𝐵 has no o-extreme point, but 𝐴 ∪ 𝐵 is not staircase connected.
An extension of Theorem 3.4 follows.

Theorem 3.5. Let  be a finite family of smooth convex bodies in ℝ2 such that int ∪  is connected
and, for any triple𝐴, 𝐵, 𝐶 ∈  , there does not exist in the boundary of𝐶 any line-segment 𝑎𝑏 parallel
to a coordinate axis such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. The set ∪ is staircase connected if and only if the
closure of its complement is orthogonally connected and has no o-extreme point.
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10 of 13 DU et al.

F IGURE 3 . 2 𝐴 ∩ 𝐵 = {𝑥}.

F IGURE 3 . 3 𝑐 is a farthest point of 𝐾 from 𝑎𝑏.

Proof. The “only if” part follows directly from Theorem 3.3.
For the “if” part, we first show𝑀 = ∪ is orthogonally convex. Suppose that𝑀 is not orthog-

onally convex; then there exist two points 𝑎, 𝑏 ∈ 𝑀 such that 𝑎𝑏 is vertical or horizontal, but
𝑎𝑏 ⊄ 𝑀. Without loss of generality, we assume that 𝑎𝑏 is vertical and minimal in the sense of
inclusion, and 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, where 𝐴, 𝐵 ∈  . Let 𝐾 be the closure of the bounded component
of ∁(𝑀 ∪ 𝑎𝑏) meeting 𝑎𝑏 and 𝑐 be a farthest point of 𝐾 from 𝑎𝑏 (see Figure 3.3). Then 𝑐 ∈ bd𝐾.
Clearly, 𝑐 ∈ bd∁𝑀. Since 𝑐 is not an 𝑜-extreme point of cl∁𝑀 and int𝑀 is connected, there exists
a vertical line-segment 𝑐𝑒 ⊂ bd𝐾 such that 𝑐𝑒 ⊂ 𝐶 and 𝐶 ∈  . Obviously, 𝑐𝑒 ⊂ bd𝐶. Since 𝑀 is
connected, there exist two point 𝑓, g ∈ 𝑐𝑒 and two convex bodies 𝐷, 𝐸 ∈  such that 𝑓 ∈ 𝐶 ∩ 𝐷

and g ∈ 𝐶 ∩ 𝐸, which contradicts the hypothesis. Therefore,𝑀 is orthogonally convex.
Since𝑀 is a connected finite union of smooth convex bodies inℝ2,𝑀 is orthogonally connected.
By Lemma 1.1,𝑀 is staircase connected. □

The following corollary is an immediate consequence of Theorem 3.5.

Corollary 3.6. Let 𝑀 be a finite union of strictly convex, smooth convex bodies in ℝ2 with int𝑀

connected. The set𝑀 is staircase connected if and only if cl∁𝑀 is orthogonally connected and has no
o-extreme point.

The condition about the triple 𝐴, 𝐵, 𝐶 is necessary in Theorem 3.5. For example, let 𝑀 = 𝐴 ∪

𝐵 ∪ 𝐶 be like in Figure 3.4. One can see that cl∁𝑀 is orthogonally connected and has no o-extreme
points. However, 𝐶 is not strictly convex and𝑀 is not staircase connected.
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ON ORTHOGONAL AND STAIRCASE CONNECTEDNESS IN THE PLANE 11 of 13

F IGURE 3 . 4 𝐶 is not strictly convex.

F IGURE 3 . 5 𝑎𝑏 ⊄ 𝑀.

Theorem 3.7. Let𝑀 be a connected union of finitely many strictly convex, smooth convex bodies.
If no pair of convex bodies have precisely one point in common, and cl∁𝑀 is orthogonally connected
and has no o-extreme point, then𝑀 is staircase connected.

Proof. We first show that int𝑀 is connected. For any two convex bodies 𝐴 and 𝐵, if 𝐴 ∩ 𝐵 ≠ ∅,
then card(𝐴 ∩ 𝐵) ⩾ 2, which implies that int(𝐴 ∪ 𝐵) is connected.
A straightforward argument by induction on the number of convex bodies involved shows that

int𝑀 is connected.
By Corollary 3.6,𝑀 is staircase connected. □

In the following, we further investigate the staircase connectedness of the union of a finite
family of smooth convex bodies.

Theorem 3.8. Let  be a finite family of smooth convex bodies, the union𝑀 of which is connected,
such that, for any𝐴 ∈  , bd𝐴 includes no line-segment parallel to a coordinate axis. If, for any pair
𝐴, 𝐵 ∈  with connected union, 𝐴 ∪ 𝐵 is staircase connected, then𝑀 is staircase connected.

Proof. We show that𝑀 is staircase connected by induction on card() = 𝑛.
When 𝑛 = 2, the hypothesis directly implies the statement.
We assume that𝑀 is staircase connected for at most 𝑛 − 1 smooth convex bodies. Nowwe con-

sider the case card() = 𝑛 ⩾ 3. Suppose that𝑀 is not orthogonally convex; then there exist two
points 𝑎, 𝑏 ∈ 𝑀 such that 𝑎𝑏 is vertical or horizontal, but 𝑎𝑏 ⊄ 𝑀. Without loss of generality, we
assume that 𝑎𝑏 is vertical, and 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, where 𝐴, 𝐵 ∈  , see Figure 3.5. Let 𝐺 be the inter-
section graph of  . The connectedness of  and that of 𝐺 are equivalent. Let 𝑃 be a shortest path
in 𝐺 connecting the vertices 𝐴 and 𝐵. If 𝑃 has at most 𝑛 − 1 vertices, then 𝑎𝑏 ⊂ 𝑀 by the induc-
tion hypothesis, contradicting our assumption. If 𝑃 is longer, then its vertices form  . Choose a
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12 of 13 DU et al.

F IGURE 3 . 6 𝐴 is not strictly convex.

point 𝑐 ∈ cl(𝑀 ⧵ (𝐴 ∪ 𝐵)) closest to 𝑎𝑏. This point 𝑐 belongs to some convex body 𝐶 ∈  , vertex
of 𝑃 different from 𝐴 and 𝐵. The subpaths of 𝑃 from 𝐶 to 𝐴 and from 𝐶 to 𝐵 determine two con-
nected unions of elements of  of cardinality less than 𝑛. There exist two points 𝑎′ ∈ 𝐴, 𝑏′ ∈ 𝐵

such that the line 𝑎′𝑏′ ∋ 𝑐 is parallel to 𝑎𝑏. By the induction hypothesis, 𝑎′𝑐, 𝑐𝑏′ ⊂ 𝑀. Since for
any convex body of  , there does not exist in its boundary any line-segment parallel to a coordi-
nate axis, the same holds for𝑀, which implies that 𝑐 is not the closest point from 𝑎𝑏. Thus, we
get a contradiction.
Therefore,𝑀 is orthogonally convex.
Since  is a family of smooth convex bodies,𝑀 is orthogonally connected.
It follows from Lemma 1.1 that𝑀 is staircase connected. □

The condition that there does not exist in the boundary of each smooth convex body any line-
segment parallel to a coordinate axis in Theorem 3.8 is not redundant. For example, 𝐴 ∪ 𝐵 and
𝐴 ∪ 𝐶 shown in Figure 3.6 are staircase connected, but 𝐴 ∪ 𝐵 ∪ 𝐶 is not staircase connected.
From Theorem 3.8, we get the following result.

Corollary 3.9. Let be a finite family of strictly convex, smooth convex bodies, the union𝑀 of which
is connected. If, for any pair𝐴, 𝐵 ∈  with connected union, 𝐴 ∪ 𝐵 is staircase connected, then𝑀 is
staircase connected.
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